Though various approaches have been considered, forecasting near-term market changes of equities and similar market data remains quite difficult. In this paper we introduce an approach to forecast near-term market changes for equity indices as well as portfolios using variational inference (VI). VI is a machine learning approach which uses optimization techniques to estimate complex probability densities. In the proposed approach, clusters of explanatory variables are identified and market changes are forecast based on cluster-specific linear regression. Apart from the expected value of changes, the proposed approach can also be used to obtain the distribution of possible outcomes, which can be used to estimate confidence levels of forecasts and risk measures such as VaR (Value at Risk) for the portfolio. Another advantage of the proposed approach is the clear model interpretation, as clusters of explanatory variables (or market regimes) are identified for which the future changes follow similar relationships. Knowledge about such clusters can provide useful insights about portfolio performance and identify the relative importance of variables in different market regimes. Illustrative examples of equity and bond indices are considered to demonstrate forecasts of the proposed approach during Covid-related volatility in early 2020 and subsequent benign market conditions. For the portfolios considered, it is shown that the proposed approach provides useful forecasts in both normal and volatile markets even with only a few explanatory variables. Additionally the predicted estimate and distribution adapt quickly to changing market conditions and thus may also be useful in obtaining better real-time estimates of risk measures such as VaR compared to traditional approaches.


翻译:尽管考虑了各种办法,但预测股票的近期市场变化和类似的市场数据仍然相当困难。在本文件中,我们采用一种预测股票指数和组合组合的近期市场变化的方法,使用变式推断法(VI)。VI是一种机械学习方法,使用优化技术来估计复杂概率密度;在拟议方法中,查明了解释变量群,根据特定集群的线性回归对市场变化作出预测。除了预期变化的价值外,还可用拟议办法来分配可能的结果,可用于估计预测投资组合的预测和风险措施的可信度,如VaR(风险价值值)等。拟议办法的另一个优点是清晰的模型解释,因为确定了解释变量组(或市场制度),其未来变化也遵循类似关系。关于这些集群的知识可以对组合业绩提供有益的洞察,并查明变量在不同市场制度中的相对重要性。除了预期的变化价值外,还考虑采用股票和债券指数的简单例子,以显示2020年初与可控波动期间的拟议办法的预测值,以及随后的良性市场条件。拟议的办法的另一个优点是明确的模式解释,即确定解释变量组群集(或市场预测的预测值),因此,在预测中,只有预测的正常的、预测中,才能对市场进行预测的预测的预测,因此,在预测中提供预测的、预测的预测的预测,只有预测的、预测的、预测的预测的估价的预测的估价的估价的估价的预测,只有预测的、预测的、预测的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价办法,才能提供的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的估价的。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月16日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员