Many important applications are modelled by differential equations with positive solutions. However, it remains an outstanding open problem to develop numerical methods that are both (i) of a high order of accuracy and (ii) capable of preserving positivity. It is known that the two main families of numerical methods, Runge-Kutta methods and multistep methods, face an order barrier: if they preserve positivity, then they are constrained to low accuracy: they cannot be better than first order. We propose novel methods that overcome this barrier: our methods are of second order, and they are guaranteed to preserve positivity. Our methods apply to a large class of differential equations that have a special graph Laplacian structure, which we elucidate. The equations need be neither linear nor autonomous and the graph Laplacian need not be symmetric. This algebraic structure arises naturally in many important applications where positivity is required. We showcase our new methods on applications where standard high order methods fail to preserve positivity, including infectious diseases, Markov processes, master equations and chemical reactions.
翻译:许多重要的应用都是以具有积极解决办法的不同方程式为模型的。然而,在开发数字方法方面,仍是一个尚未解决的未决问题,这些方法既(一)高度精确,(二)能够保护积极性。已知数字方法的两个主要组,即龙格-库塔方法和多步方法,面临一个秩序障碍:如果它们保留了假定性,那么它们就会被限制在低精确度上:它们不能比第一顺序更好。我们提出了克服这一障碍的新的方法:我们的方法是第二顺序的,并且保证它们能保护假定性。我们的方法适用于具有特殊图解的大型差异方程式,我们加以说明。公式不需要线性或自主性,而图形拉普拉卡技术不需要对称性。这种代数结构自然产生于许多重要的应用中,需要假设性。我们展示了我们关于标准高顺序方法无法保持假定性的应用的新方法,包括传染病、Markov过程、主方程式和化学反应。