项目名称: 基于表面等离子共振的光流体显微镜超分辨率聚焦成像模型研究

项目编号: No.61205204

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 曹鹏飞

作者单位: 兰州大学

项目金额: 23万元

中文摘要: 利用表面等离子共振(Surface plasmon resonance, SPR)增加光波的透射率、突破衍射极限的特性,构建超分辨率聚焦成像的光流体显微镜,考察细胞产生的自偶极子在外电场中运动规律以及与流体输运速度的关系、超分辨率聚焦成像金属膜周期结构以及在此结构中由于表面等离子波(Surface Plasmon Wave, SPW)的传播距离引起SPR相互串扰干涉损耗机制。光流体显微镜中金属膜的一边是由电极控制的流体,一边是介质和CMOS或CCD探测器阵列,这就导致了金属膜两边介质是各向异性且不对称的,研究在这种不对称结构下存在的各种表面等离子(Surface Plasmons,SPs)模式以及这些模式对成像分辨率之间的影响规律,获得分辨率达到200nm以下的光流体显微镜超分辨率聚焦成像模型。该研究项目开展不仅拓宽了光流体应用领域,而且对进一步研究生命科学、微加工制造等领域具有重要意义。

中文关键词: 超分辨率成像;光流体;光捕获;表面等离子体;纳米颗粒

英文摘要: We construct a super-resolution Optofluidic Microscopy (OFM) based on Surface plasmon resonance (SPR). SPR can enhance the transmittance of the incident optical wave, as well as go far beyond the diffraction limit to obtain the super-resolution. We shall investigate the relation between the transport speed of microfluidic and the characteristics of cells motion in external electric field, the super-resolution imaging structure and the crosstalk between adjacent nano-apertures due to Surface Plasmon Wave (SPW). OFM is consisted of fluid-metal film- medium structure and CMOS (or CCD) array. Because the fluid is the anisotropy medium, it results in the structure of fluid-metal film- medium structure and CMOS (CCD) array being the anisotropy asymmetric. We also investigate the SPs modes of this asymmetric structure and the relation of the SPs modes and the imaging resolution of OFM. Thus, we will obtain the super-resolution imaging model of OFM. All these research results will elaborate the transmission characteristics and regular patterns of SPs in the anisotropy asymmetric structure, which will be applicable to optofluidic nanoimaging, life science, microfabrication, medical diagnosis, environmental and food quality inspection, and so on.

英文关键词: Superresolution imaging;Optofluidics;Optical trapping;Surface Plasma Resonance;Nanoparticle

成为VIP会员查看完整内容
0

相关内容

快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
35+阅读 · 2021年8月27日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
【CSIG云讲堂】4月12日19点,黄玲玲主讲:基于超表面的全息显示研究
中国图象图形学学会CSIG
0+阅读 · 2022年4月7日
用扩散模型生成高保真度图像
TensorFlow
1+阅读 · 2021年8月17日
小图像,大图景:AI彻底改变了显微镜技术
机器之心
0+阅读 · 2021年5月2日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
一文概览基于深度学习的超分辨率重建架构
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年5月25日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
35+阅读 · 2021年8月27日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
36+阅读 · 2021年4月23日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
相关基金
微信扫码咨询专知VIP会员