项目名称: 可控制备的纳米级钨针尖应用于表面缺陷的扫描隧道显微学研究

项目编号: No.11504339

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 王俊听

作者单位: 中国电子科技集团公司第三十八研究所

项目金额: 24万元

中文摘要: 缺陷因其低维性导致了很多新奇的局域量子现象,对材料的电学、力学等性质具有重要影响。扫描隧道显微镜(STM)因其在实空间可达原子分辨,尤其适合表征材料表面缺陷。要想理解表面缺陷附近的局域量子现象,需实现对其高分辨的STM成像。分辨率越高,表面信息就更丰富、精细。然而要获得高分辨,首先要制备非常尖锐的针尖。本项目立足于我们成功研制的场离子显微镜(简写FIM),利用场致刻蚀技术在纳米尺度上可控制备特定曲率半径的钨针尖。不同定制尺寸的针尖(1 ~10纳米)将应用在由我攻读博士学位时搭建的原子分辨率的低温超高真空STM上,首先进行定量地研究针尖尺寸与分辨率之间关系。通过进一步完善“集体干涉模型”,用于揭示材料表面缺陷附近奇异电子态行为的微观机制。

中文关键词: 纳米针尖;场离子显微镜;扫描隧道显微镜;表面缺陷;;原子分辨率

英文摘要: Defects, due to its low dimension, lead to lots of novel local quantum phenomena, thus play an important role in the electrical and mechanical properties of materials. Scanning tunneling microscope (STM) because of its atomic resolution in real space, is especially suitable for characterization of surface defects in materials. For understanding the quantum phenomena nearby defects, it needs to image them with high resolution. The higher the resolution, the more rich and fine information the surface. However, it needs to fabricate very sharp tip for reaching to high resolution. In this project, we will make controllable preparation of special curvature radius tungsten tip at nano-scale by using field-etched technique which is based on our built field ion microscope (FIM). Some fixed size tip (1-10 nm) would be applied to quantitatively study the relationship between tip size and resolution in a low-temperature UHV- STM which is built during my PhD. Furthermore, by improving “collective interference model”, we will reveal mechanism of novel electron states occurring nearby surface defects in materials.

英文关键词: nano-tip;field ion microscope;STM;surface defect;atomic resolution

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
几何深度学习分子表示综述
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年8月13日
专知会员服务
15+阅读 · 2021年8月10日
专知会员服务
86+阅读 · 2021年8月8日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
手机的负一屏有用吗?
ZEALER订阅号
0+阅读 · 2021年11月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年5月25日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
几何深度学习分子表示综述
专知会员服务
40+阅读 · 2021年9月7日
专知会员服务
15+阅读 · 2021年8月13日
专知会员服务
15+阅读 · 2021年8月10日
专知会员服务
86+阅读 · 2021年8月8日
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员