项目名称: 氮化铟基半导体异质生长和掺杂的数值模拟研究

项目编号: No.11347016

项目类型: 专项基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王建利

作者单位: 中国矿业大学

项目金额: 20万元

中文摘要: 随着半导体氮化铟(InN)材料生长、测试技术的提高和本征能隙认识的突破,InN有望成为长波长半导体光电器件、全彩显示、高效率太阳能电池等的最佳材料。目前InN体单晶材料主要通过异质外延方法制备,然而常用衬底易氮化,从而影响InN薄膜质量。找到合适的衬底,制备出高质量的InN体单晶材料一直是人们关心的问题。良好的p型和n型掺杂材料是实现InN基光电子器件的前提条件,而人们还没有找到合适的表面p型掺杂候选对象。InN基稀磁半导体的研究有助于自旋电子器件的发展,但其磁性掺杂尚未引起广泛关注。本项目将探索谱方法自洽求解薛定谔—泊松方程,最佳p型/磁性掺杂方案和InN/Sr(Ba,Pb)TiO3异质界面微结构与物理性质,包括II族杂质原子/磁性原子在InN体内和不同(非)极化表面掺杂,InN在Sr(Ba,Pb)TiO3衬底上的吸附生长、异质界面微结构等问题,为InN基光电子器件的制备和设计提供依据。

中文关键词: 氮化铟;钛酸钡;钛酸铅;镓酸锂;P型掺杂

英文摘要: Indium nitride (InN) is a promising material for near-infrared optoelectronics, high-efficiency solar cells, and high-speed electronics owing to its considerably narrower direct band gap (0.7–0.8 eV) and superior electron transport characteristics compared to AlN and GaN. As the growth of good quality InN single crystals is difficult, this material is usually observed by the hetero-epitaxial growth. InN is usually grown using highly reactive nitrogen sources such as NH3 or N2 plasma, which cause nitridation of the substrate surfaces just before the epitaxial growth. This limits the substrates for the epitaxial growth of InN to chemically stable materials. The suitable substrate materials play an important role for the high-quality epitaxial growth. Development of semiconductor growth techniques on perovskite oxides substrates allows us to fabricate integrated devices which combine the unique properties of superconductors with the conventional semiconductor optical and electronic devices. The fabrication of p- and n-type doped layers underlies the design of virtually all electronic and optoelectronic devices. However, p-type doping in InN has been very difficult to achieve due to its propensity for n-type carrier formation. The knowledge of the InN-based diluted magnetic semiconductors is of great importance for

英文关键词: InN;BaTiO3;PbTiO3;LiGaO2;P-type dopant

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月28日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
179+阅读 · 2020年9月12日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
21+阅读 · 2021年6月26日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
专知会员服务
51+阅读 · 2020年12月28日
【TAMU】最新《时间序列分析》课程笔记,527页pdf
专知会员服务
179+阅读 · 2020年9月12日
相关资讯
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员