项目名称: 有理曲面上的一维半稳定层模空间
项目编号: No.11301292
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 袁瑶
作者单位: 清华大学
项目金额: 22万元
中文摘要: 模空间理论在代数几何领域中一直经久不衰。近年来,由于GW-DT-PT对应理论猜想的建立以及部分解决,再加上奇特对偶猜想向曲面的扩展,曲面上一维半稳定层的模空间越来越具有研究意义。 本项目旨在研究学习有理曲面上的一维半稳定层模空间,侧重于研究模空间的自身几何结构以及其上的行列式线丛,例如:计算模空间的欧拉数、贝蒂数以及霍奇数,计算行列式线丛的截面空间维数以及全纯欧拉特征。之前我们已经获得一些个例的结果。我们期望在已有的工作经验的基础上改进技巧,取得更一般性的结果。
中文关键词: 有理曲面;模空间;一维半稳定层;motivic 测度;奇特对偶
英文摘要: Moduli spaces theory is always a popular topic in algebraic geometry. Recently, because of the partially proven conjecture of GW-DT-PT correspondence theory, and also the extension of strange duality conjecture to surfaces, moduli spaces of 1-dimensional semistable sheaves on surfaces become more and more worth studying. This project aims to study moduli spaces of 1-dimensional semistable sheaves on rational surfaces, mostly to study the geometric structure of the moduli spaces and as well the determinant line bundles on them, for instance, to compute the Euler numbers, Betti numbers and Hodge numbers of the moduli spaces, and to compute the dimensions of the global sections spaces or the holomorphic Euler characteristics of the determinant line bundles. We have got some results for particular cases. We expect to improve the technics, based on our experience in working on this subjet, and gain results more general.
英文关键词: rational surfaces;moduli spaces;1-dimensional semistable sheaves;motivic measure;strange duality