项目名称: 应力敏感型锰氧化物薄膜的生长和性能研究

项目编号: No.11304285

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 陈莉萍

作者单位: 浙江师范大学

项目金额: 30万元

中文摘要: 锰氧化物薄膜的生长和应力效应研究对锰氧化物作为功能材料的应用和物理机制的认识都很重要。Pr0.5Sr0.5MnO3(PSMO)等半掺杂锰氧化物的基态在相图上位于铁磁金属相和反铁磁绝缘相两相的交界处,内部存在两相之间的激烈竞争。这种激烈的相竞争使得材料对外界干扰反应强烈,比一般的锰氧化物显示出更大的应力敏感性。本项目将以PSMO及其掺杂系列应力敏感型的锰氧化物薄膜为研究对象,在各种衬底上制备不同厚度薄膜,系统研究制备工艺对薄膜晶相生长和界面应力的控制;在钙钛矿结构铁电衬底上外延生长锰氧化物薄膜形成异质结构,利用这种结构可以实现应力原位调制的优越性,探究应力对薄膜电磁相图、磁致电阻和电致电阻效应的调制。本项目的研究目标是阐明薄膜生长和界面应力对材料性能的作用和增大电致电阻、磁致电阻以及弹性电阻等效应的途径,以提高相关功能器件的性能。

中文关键词: 应力效应;锰氧化物;电致电阻;磁电阻;

英文摘要: The growth of manganite thin films and substrate-induced strain effect is critical for their application in functional devices and the understanding of underlying physics. The half-doped manganites such as Pr0.5Sr0.5MnO3(PSMO) show a ground state locating at phase boundary between the ferromagnetic metal and antiferromagnetic insulator where the two phases compete with each other strongly. Such strong phase competition yields that the electric and magnetic properties of the films are greatly sensitive to the external perturbs such as temperature, strain, electric current and magnetic field. A distinguish strain effect is expected in this kind of films may. In this project, we plan to focus on PSMO and the related doped films. The influence of film growth, substrate-induced strain and film thickness on the electric and magnetic diagram will been comprehensively studied. By using the heterostructure of mangnite/ferroelectrics in which the substrate-induced strain could be in-situ modified, the strain effect on the electric current-induced electroresistance and magnetoresistance will also be investigated. These studies would benefit for the application of the manganite films and understanding of the physics of the materials.

英文关键词: strain effect;manganite;electroresistance;magnetoresistance;

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年8月7日
专知会员服务
31+阅读 · 2021年5月7日
​【CVPR 2021】半监督视频目标分割新算法,实现SOTA性能
专知会员服务
12+阅读 · 2021年4月26日
专知会员服务
28+阅读 · 2020年8月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关主题
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
104+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年8月7日
专知会员服务
31+阅读 · 2021年5月7日
​【CVPR 2021】半监督视频目标分割新算法,实现SOTA性能
专知会员服务
12+阅读 · 2021年4月26日
专知会员服务
28+阅读 · 2020年8月8日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员