项目名称: 基于可延展衬底的铁电纳米线力电可调控性研究

项目编号: No.11302268

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 林少鹏

作者单位: 中山大学

项目金额: 28万元

中文摘要: 铁电纳米材料作为重要的存储器件、传感器、调制器材料,在现代微电子工业中有着重要的应用,铁电纳米线更是铁电功能器件不可或缺的重要角色。随着科技的发展,近年来电子器件更是向着可延展、可折叠的方向快速发展。本研究拟采用热力学唯象理论和有效哈密顿量方法,对结合在可延展性衬底上的铁电纳米线展开深入研究,通过建立可延展衬底与铁电纳米线的形变-应变模型,得到宏观形变对微观结构的应力加载,综合考虑尺寸效应、表面张力、退极化场、电学边界等因素,通过有效哈密顿量模型全面展开对铁电纳米线的力学和电学可调控性研究。同时,使用压电力显微镜从实验上展开对粘合在柔性衬底上的铁电纳米线的研究,与理论结果相互验证。本项目研究将丰富铁电纳米材料研究学科的内容,也为铁电材料在可延展性器件方面的应用提供重要的理论支持。

中文关键词: 铁电纳米线;热力学模型;尺寸效应;电热效应;调控

英文摘要: As an important material for data storage devices, sensors and modulators, nano ferroelectric materials have been widely applied in morden electronic industry, in which ferroelectric nanowires(FNWs) play an indispensible role. In recent years, with the advance in science and technology, electronic devices lead a rapid expansion in the tendency of stretchability and foldability. This project intends to go into FNWs which are bonded on stretchable substrates, using the Thermodynamic phenomenological theory and effective Hamiltonian. By building a deformation-strain-transfer model of the bonded FNWs with strechable substrate, stress load on FNWs via macro deformation can be obtained.Take into consideration size effects, surface tension, depolarization field and electrical boundaries, effective hamiltonian method will be applied for investigation on force and electric controllabilities of FNWs bonded on stretchable susbtrates. Meanwhile, piezo response force microscopy(PFM) will be applied to study the FNWs experimentally as a verification of the theoretical results. This research will enrich the scientific research contents in FNWs and act as an vital theoretical support for the applicaions of FNWs on stretchable devices.

英文关键词: Ferroelectric nanowire;Thermodynamic model;Size effect;Electrocaloric effect;Tunning

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年7月13日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年1月29日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
折叠屏手机能否成为主流?
ZEALER订阅号
0+阅读 · 2021年12月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关主题
相关VIP内容
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年7月13日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
27+阅读 · 2021年1月29日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员