项目名称: 两类非马氏保险模型下的最优问题以及公司合并问题
项目编号: No.11471171
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 柏立华
作者单位: 南开大学
项目金额: 65万元
中文摘要: 本项目拟利用随机过程、随机控制、随机分析等理论研究两类非马氏更新和带跳分数布朗运动风险模型下的保险和最优问题,以及扩散风险模型下的公司合并问题。通过 HJB方程粘性解、分数积分和导数、随机微分方程、最大值原则等理论解决更新模型下的最优投资、分红和再保险问题以及受分数布朗运动和泊松点过程驱动的随机微分方程的解的存在唯一性和此模型下的破产概率和线性二次规划问题。另外我们也将尝试利用最优停时、拟变分不等式和博弈论等理论给出公司合并的最优时间和最优分红策略。该项目研究的问题都是保险理论中的难点问题, 尤其更新风险模型下的最优问题一直以来都是保险理论中的难点。本项目同时也将涉及很多理论方面的研究例如粘性解、随机微分方程、Ito公式等,因此本项目的研究不仅能推动保险理论的发展,同时也将促进随机控制、随机分析等其它理论的发展。
中文关键词: 马氏过程;最优策略;随机分析;随机过程
英文摘要: In this project, we will apply stochastic process、stochastic control、stochastic analysis to insurance and optimal problems under renewal and fractional Brownian motion with jump risk models and optimal problem about merge of companies. By using some thoeries such as viscosity solutino of HJB equation, fractional intergral and derivative, stochastic differential equation(SDE), maximum principle, we are trying to solve optimal investment、dividend and reinsurance problems under renewal risk model, and prove the exsitence and uniqueness of solution of SDE driven by fractional Brownian motion with poisson point processes and solve ruin problem and linear quadratic control problems under this model. We will also try to find optimal merger time and optimal dividend strategy under the criterion of maximizing the expected discounted dividend payments by optimal stopping, quasi-variational inequalities and game theory. All of problems in this project are difficult, especially optimal problems in renewal model are open problems for a long time. The project involves some study on theory such as viscosity solution、SDE、 Ito formula。 Hence, the project will not only enrich the content of insurance but also promote the development of the others fields such as stochastic control and stochastic analysis。
英文关键词: Markov process;Optimal strategy;Stochastic calculus;Stochastic control