项目名称: 基于拟阵理论的二进制线性分组码的设计及其应用研究
项目编号: No.11461031
项目类型: 地区科学基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 巫光福
作者单位: 江西理工大学
项目金额: 36万元
中文摘要: 码的纠错能力直接影响到通信系统的性能,而码的纠错能力与码的最小距离直接相关。本项目拟利用拟阵理论进行码率为0.5的线性分组码的设计,包括对它们的对偶码与自对偶码的研究;借助拟阵理论设计码率为1/p的准循环码进而对(72,36,16)二进制线性准循环码进行研究;最后利用拟阵理论进行准循环LDPC码的设计,以达到通过提高码的纠错能力进一步提高通信系统性能的目的。本项目的研究力争建立拟阵理论与纠错码之间严密的关系式,从而利用该关系式来指导线性分组码的设计。该研究将丰富和发展拟阵理论在纠错码中的应用,同时本项目所构造的码将会更好地服务于未来的无线通信系统,特别是对将要研究的第5代移动通信网络(5G)的技术研发具有重大的意义。
中文关键词: 编码理论;线性码;准循环码;纠错码;低密度奇偶校验码
英文摘要: Directly,the error- correcting cability which is related to the maximum minimum distance d of linear block codes impacts the performance of communication system.In this project, firstly,matroid theory will be applied for designing binary linear block codes with rate 0.5 including the research of dual codes and self dual codes;secondly, binary QC codes with rate 1/p will be considered ,furthermore, researching the(72,36,16)QC code;lastly,the research of QC-LDPC code is considered. The strict relationship between matroid theory and error correcting code be founded through the research of questions in this project,in addition, application the relationship to design the linear block codes.The project will enrich and develope the applications of matroid theory in error correcting codes.In addition,the codes constructed above can be applied widely to wireless communication system in the near future,especially in the research on the fifth generation(5G) mobile communication network.
英文关键词: Coding theory;Linear code;Quasi-cyclic code;Error correcting code;Low-density parity-check code