项目名称: 面向船型优化的数据挖掘方法及应用研究

项目编号: No.51279147

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 水利工程

项目作者: 冯佰威

作者单位: 武汉理工大学

项目金额: 80万元

中文摘要: 目前国内外的船型优化尚存在优化时间长及难以得到全局最优解的难题,因而严重影响了船型优化的工程化应用。为解决此难题,本项目提出将数据挖掘技术应用于船型优化, 其基本思想是: 在船型优化开始之前,利用数据挖掘技术对船型优化的参数空间进行探索, 从中得到可以获得最佳结果的参数取值范围, 从而大大缩减船型优化的搜索空间, 然后采用基于梯度的优化方法在缩减的船型优化空间内分别进行数值寻优, 最终实现以较高的效率获得可信赖的全局最优解。本项目重点研究如何利用数据挖掘技术实现船型优化设计空间的探索,通过对初始设计空间典型样本点的选择方法、仿真数据的离散化方法及数据挖掘算法等关键技术的研究,形成一套面向船型优化的数据挖掘理论及方法。这些理论及方法在船型优化中的应用不仅可以解决目前船型优化中的技术难题,而且对于创新船型研发方法、加速船型优化的工程化应用进程具有重要意义。

中文关键词: 参数空间探索;数据挖掘;数据离散;知识获取;船型优化

英文摘要: There are two problems, huge optimization time and difficult to get the global optimization solution, in the research of hull form optimization both in domestic and abroad at present, Which severely limit the engineering application of hull form optimization. A new method, data mining techniques, is propounded to apply in the hull form optimization to solve these problems. The basic idea is: before the beginning of the hull form optimization, it uses data mining techniques to explore the parameter space, derives the parameter range for the best results, and then greatly reduces the search space. Gradient-based optimization method is adopted to optimize in reduced optimization space, and finally a reliable global optimization solution is obtained in high efficiency. The project focuses on how to use data mining techniques to achieve the effective exploration of hull form optimization design space. With the research on key technologies such as the selection method of the typical sample point in the initial design space , the discrete method of simulation data and data mining algorithms, it forms the data mining theories and methods for hull form optimization. The application of these theories and methods in hull form optimization can not only solve the current technical problems, but also have great significance f

英文关键词: Parameter Exploration;Data Mining;Data Discrete;Knowledge Acquisition;Hull Form Optimization

成为VIP会员查看完整内容
0

相关内容

数据挖掘(Data mining)一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息和知识的过程。
迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
对抗机器学习在网络入侵检测领域的应用
专知会员服务
33+阅读 · 2022年1月4日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知会员服务
20+阅读 · 2022年1月4日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
面向大数据处理框架的JVM优化技术综述
专知会员服务
16+阅读 · 2021年11月27日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
44+阅读 · 2021年5月24日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
75+阅读 · 2020年8月31日
CMU博士论文:可微优化机器学习建模
专知会员服务
58+阅读 · 2019年10月26日
对抗机器学习在网络入侵检测领域的应用
SIGIR2021 | 基于排序的推荐系统度量优化新视角
机器学习与推荐算法
1+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
迁移学习方法在医学图像领域的应用综述
专知会员服务
59+阅读 · 2022年1月6日
对抗机器学习在网络入侵检测领域的应用
专知会员服务
33+阅读 · 2022年1月4日
AAAI 2022 | 面向图数据的对抗鲁棒性研究
专知会员服务
20+阅读 · 2022年1月4日
【博士论文】基于冲量的加速优化算法
专知会员服务
25+阅读 · 2021年11月29日
面向大数据处理框架的JVM优化技术综述
专知会员服务
16+阅读 · 2021年11月27日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
44+阅读 · 2021年5月24日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
75+阅读 · 2020年8月31日
CMU博士论文:可微优化机器学习建模
专知会员服务
58+阅读 · 2019年10月26日
相关资讯
对抗机器学习在网络入侵检测领域的应用
SIGIR2021 | 基于排序的推荐系统度量优化新视角
机器学习与推荐算法
1+阅读 · 2021年12月6日
【博士论文】基于冲量的加速优化算法
专知
7+阅读 · 2021年11月29日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
【深度学习基础】1.监督学习和最优化
微信AI
0+阅读 · 2017年6月7日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2010年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员