项目名称: 梅尼埃病发病机制生物力学研究及临床应用

项目编号: No.31500765

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 生物科学

项目作者: 沈双

作者单位: 滨州医学院

项目金额: 20万元

中文摘要: 梅尼埃病(MD)为耳科一种常见疾病,其反复发作性眩晕和波动性感音神经性听力下降等症状严重困扰了患者。然而MD的病因和发病机理仍然不明确,其诊断和防治给医生带来了很大困惑,如何能够更好更有效的治疗MD是现今全世界耳鼻喉领域公认的难题之一。近年有学者推测MD的发病机理为:膜迷路积水产生的静水压力迫使闭合的Bast瓣膜或连合管突然张开,内淋巴体积重新分布,耳蜗和前庭功能突然变化,从而诱发出MD的症状。本项目将从生物力学角度对上述推测进行探索。具体方法是基于申请者前期内耳膜迷路有限元数值模型研究,应用医学与生物力学多学科交叉的方法,提取完整内耳迷路的解剖形态,建立膜迷路积水进程和MD发病机理生物力学研究平台,构建较完整内耳膜迷路有限元数值模型,结合相关动物实验和临床资料,从生物力学角度揭示MD的发病机理;加深人们和医生对MD发病机理的新的认识,为该病医学临床诊断和防治提供理论与实践研究基础。

中文关键词: 听觉系统;前庭系统;膜迷路;流固耦合;建模与仿真

英文摘要: Ménière’s disease (MD) is a common inner ear disease, which causes symptoms of recurrent attacks of vertigo, fluctuating sensory hearing loss, etc., seriously disturbing the patients. However, the precise aetiology and pathogenesis remain unclear so that it confuses physicians to diagnose and treat MD. Naturally, it has become one of a worldwide challenge in the field of otolaryngology to make a better understanding and more effective treatment of MD. Some researchers claimed that the hydrostatic pressure produced by the endolymphatic hydrops may force either the Bast’s valve or the reuniens duct open, which cause a rapid fluid shunt and a sudden change in cochlear and vestibular function, then MD. In this project we will prove the inference using a biomechanical method. Specifically, we will establish a parallel biomechanical model combining with the theory and method of medicine and biomechanics based on the complete anatomy of the inner ear membranous labyrinth system to analyze the progress in endolymphatic hydrops and the pathogenesis of MD. Finally, by comparing the numerical results with the results of relevant animal experiments and clinical data, we will be able to reveal the pathogenesis of MD and develop a profound understanding of the mechanism of MD, and provide the foundation for researching the theory and practice of MD’s diagnosis, prevention, and treatment.

英文关键词: auditory system;vestibular system;membranous labyrinth;fluid-structural interaction;modeling and simulation

成为VIP会员查看完整内容
0

相关内容

【ICLR2022】Vision Transformer 模型工作机制的最新理论
专知会员服务
42+阅读 · 2022年2月19日
专知会员服务
26+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年4月23日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
26+阅读 · 2021年1月29日
专知会员服务
219+阅读 · 2020年8月1日
【干货】人类海马体精细亚区加工工作记忆的神经动力学机制
中国图象图形学学会CSIG
0+阅读 · 2021年12月8日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
领域应用 | 中医临床知识图谱的构建与应用
开放知识图谱
33+阅读 · 2017年12月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
16+阅读 · 2021年11月27日
小贴士
相关VIP内容
【ICLR2022】Vision Transformer 模型工作机制的最新理论
专知会员服务
42+阅读 · 2022年2月19日
专知会员服务
26+阅读 · 2021年10月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年4月23日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
26+阅读 · 2021年1月29日
专知会员服务
219+阅读 · 2020年8月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员