项目名称: 原位复合制备渗流型高性能铁电/介电复相陶瓷及其机理研究

项目编号: No.51202234

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 张景基

作者单位: 中国计量学院

项目金额: 25万元

中文摘要: 铁电/介电复相陶瓷具有高的介电调谐率和极低的理论微波损耗,适用于谐振器、滤波器、移相器等介电调谐微波器件,在军事和民用领域应用前景广阔。然而两相揉合烧结造成较高的微波损耗,限制了其在高频、高性能器件中的应用。针对这一问题,本项目拟用溶胶-凝胶原位复合技术制备BST/Mg2TiO4、BST/Mg3B2O6等铁电/介电复相陶瓷,并利用各自晶化温度的差异导致两相生长顺序的不同,通过控制生长工艺,实现两相包裹结构,阐明原位复合的生长机理;深入研究化学组成、晶粒尺度、包裹结构对微波、介电调谐特性的影响,建立结构及性能变化与渗流效应的对应关系,阐明铁电/介电复相陶瓷的界面渗流机理,揭示渗流型复相陶瓷的介电调谐机理及损耗机制,为研制低介电常数、大可调度及低损耗的铁电/介电复相陶瓷提供依据,为高频、高性能介电调谐微波器件的应用和研究奠定基础。本项目拟解决的关键科学问题:铁电/介电复相陶瓷的界面渗流机理。

中文关键词: 溶胶-凝胶原位复合技术;铁电/介电复相陶瓷;介电调谐特性;微波性能;渗流理论

英文摘要: Ferroelectric/dielectric composite ceramics with high dielectric tunability and low theoretical microwave loss can be applied in dielectric tunable microwave devices, such as resonator, filter and phase shifter etc., which has broad application prospects in both military and civilian. However, high microwave loss of composite ceramics caused by sintering with admixtures of ferroelectric and dielectric phases limits its application in high-frequency and high-performance devices. Aimed at this problem,this project intends to prepare ferroelectric/dielectric composite ceramics, such as BST/Mg2TiO4 and BST/Mg3B2O6 and so on, by using a sol-gel in situ process. Meanwhile, based on the respective growth-order of two phases resulting from the difference of its crystallization temperature, wrapped structure of two phases can be achived by controlling growth process. The growth mechanism in situ process will be clarified. Influence of composition, grain size and wrapped structure on microwave and dielectric tunable properties will be investigated thoroughly to establish a relationship between variations in structure and property and percolation effect. Then the interface percolative mechanism of ferroelectric/dielectric composite ceramics will be clarified and the dielectric tunable and loss mechanism of percolative comp

英文关键词: sol-gel in situ process;ferroelectric/dielectric composite ceramics;dielectric tunable properties;microwave properties;percolation theory

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
41+阅读 · 2021年2月8日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
78+阅读 · 2020年8月4日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
33+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
41+阅读 · 2021年2月8日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
78+阅读 · 2020年8月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员