项目名称: 氧化物磁性半导体外延薄膜磁性的电场调控

项目编号: No.11274201

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 陈延学

作者单位: 山东大学

项目金额: 93万元

中文摘要: 实验和理论研究表明氧化物磁性半导体中的载流子及氧空位浓度对其磁性能有重要的影响,如果能通过外电场改变材料中的载流子浓度和氧空位分布,对其中的磁交换作用进行控制,就可以实现对其磁性能的电场调控。这对于氧化物磁性半导体的磁性机理研究和新型自旋电子器件的研制都非常重要。本项目中我们计划开展如下研究工作:1)在前期工作的基础上,优化制备工艺,制备氧空位浓度可控的高质量In2O3,TiO2和NiO基磁性半导体外延薄膜;2)利用氧化物磁性半导体作为沟道层,制备成场效应管结构,研究电场诱导的载流子对材料磁性能,输运性能的调控规律,研究磁性半导体薄膜导电类型,介电常数等对电场调控效应的影响规律;3)研究电场作用下磁性半导体内氧离子迁移规律及其对材料磁性能,输运性能的影响规律。通过上述研究,探索得到外电场对氧化物磁性半导体磁性的调控机理,并最终实现室温下电场对氧化物磁性半导体磁性的有效调控。

中文关键词: 磁性半导体;氧化物薄膜;电场调控;自旋电子学;

英文摘要: Oxide magnetic semiconductor (OMS), possessing both spin and charge degrees of freedom, is one of the most important materials for spintronics application. A lot of experimental and theoretical studies showed charge carriers and oxygen vacancies play important roles in determining the magnetic properties of the OMS. By applying electric fields, it is possible to realize electrical control of magnetism as a result of the carrier or oxygen vacancy mediated exchange interaction. Electric-field manipulation of ferromagnetism has the potential for developing a new generation of spintronic devices .In this project we plan to conduct a systematical study about the effect of charge carrier and oxygen vacancy densities on the magnetic properties of the OMS and try to reveal the possible origin of ferromagnetism in OMS. Following works will be conducted in this project: 1). Based on our previous work, we will optimize the growth process and get high quality In2O3, TiO2, NiO based OMS epitaxial film with controllable oxygen vacancies density. 2). We will study the electric field modification of the magnetic and transport properties of OMS and try to find the relation between the electric field modification and OMS's carrier type and dielectric constant. 3). We will study the field-induced oxygen ion migration in OMS and i

英文关键词: magnetic semiconductor;oxide film;electrical modulation;spintronics;

成为VIP会员查看完整内容
0

相关内容

中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
21+阅读 · 2021年8月20日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
因地制宜,携手共赢 | 亚太地区游戏发行商洞察
谷歌开发者
0+阅读 · 2022年4月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关VIP内容
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
13+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
21+阅读 · 2021年8月20日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关资讯
因地制宜,携手共赢 | 亚太地区游戏发行商洞察
谷歌开发者
0+阅读 · 2022年4月11日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员