项目名称: 双色双光子激光快速直写大规模特征尺寸<50nm纳米结构阵列关键技术研究

项目编号: No.11504294

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 张琛

作者单位: 西北大学

项目金额: 23万元

中文摘要: 激光微纳加工技术打破了远场光刻过程中光学衍射极限限制,较传统光刻技术能获得更微小的特征尺寸(<100nm),且加工方式灵活多样,加工对象更加广阔。.然而,常用激光微纳加工技术在实现更高加工精度,特别是加工特征尺寸小于50nm结构、同时实现其大面积、高重复阵列的快速制备方面仍有许多不足。本课题立足当前激光纳米加工的热点问题,针对当前激光纳米加工在实现更高精度(<50nm)纳米阵列制备的难点问题,提出了一套基于双色双光子激光新型快速加工方法,进行高精度纳米结构阵列的大面积、高重复性、快速制备研究工作。课题首先通过对激光光束时空特性调制研究,获得覆盖面大、图形一致、精度高的激光点阵。在激光点阵的基础上双光子吸收机制激光超衍射纳米加工工作;进一步开展利用材料光聚合-光聚合抑制机制、结合双光子吸收机理在光刻中获得纳米量级的像素点。最后,利用扫描技术,实现双色双光子激光光刻大范围纳米结构的快速制作。

中文关键词: 纳米光刻;激光阵列;双光子吸收;光聚合抑制;微纳加工技术

英文摘要: Laser micro/nano fabrication technology is one of the most efficient method to break the diffraction limitation and implementing the structures with nano level feature size. The laser micro/nano fabrication is with the merits of manufacturing with higher precision (100nm), much flexible fabricating method and more processing substances. .However, there still lays some difficulties for acquiring a smaller feature size (especially the dimension below 50nm), and fast manufacturing of large-scale covered nano arrays with good repeatability. The proposing of this project is based on the leading edge of laser nano fabrication technology. A novel method, which is called two-color & two-photon fast laser fabrication technology, is proposed to obtaining a higher fabrication precision (<50nm) and fast implementing the large-are, consistent nano arrays. At first, a large range laser array will be created by beam spatio temporal modulation technique. The fabrication based on two-photon lithography with laser array will be experimental explored preliminarily; the photon polymerization-inhibition mechanism is combined with two-photon absorption to compress lithographing pixel to nano level. Finally, by applying the fast scanning technology the large range covering nano array will be implemented.

英文关键词: nano lithography;laser array;two -photon absorption;photon polymerization inhibition;micro/nano fabrication technology

成为VIP会员查看完整内容
0

相关内容

专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
6+阅读 · 2021年9月22日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
78+阅读 · 2020年8月4日
特征金字塔技术总结
极市平台
0+阅读 · 2022年1月31日
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
从ICCV 2021看夜间场景自监督深度估计最新进展
PaperWeekly
0+阅读 · 2021年10月14日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Table Enrichment System for Machine Learning
Arxiv
0+阅读 · 2022年4月18日
Arxiv
56+阅读 · 2021年5月3日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
6+阅读 · 2021年9月22日
专知会员服务
26+阅读 · 2021年8月24日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
78+阅读 · 2020年8月4日
相关资讯
特征金字塔技术总结
极市平台
0+阅读 · 2022年1月31日
一文带你了解语音信号处理技术
PaperWeekly
9+阅读 · 2022年1月26日
从ICCV 2021看夜间场景自监督深度估计最新进展
PaperWeekly
0+阅读 · 2021年10月14日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员