项目名称: 银基响应型粒子自组装制备光子晶体及其双效增强荧光的可控调节

项目编号: No.51203018

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 葛凤燕

作者单位: 东华大学

项目金额: 25万元

中文摘要: 基于胶体光子晶体和金属表面荧光增强效应,本项目拟采用核壳结构设计,将纳米银和温度响应型水凝胶相结合自组装成胶体光子晶体,在其表面沉积荧光素类染料,设计制备新型荧光双效增强功能材料。通过材料结构参数优化,研究响应型核壳结构组装体对光子晶体和金属协同荧光增强的影响规律。拟采用光谱、荧光寿命谱、DLS等测试方法,揭示材料荧光的双效增益机理。借助温度响应性表征,探讨材料荧光的增强可控原理,并研究其在重金属离子识别和温度响应传感器方面的应用。本项目的开展将为制备新型荧光可控光学仪器提供新的研究思路和实验依据,为拓展荧光增强理论在检测领域的应用奠定坚实的基础。

中文关键词: 核壳结构;可控荧光增强;金属增强荧光;带隙调控;响应性水凝胶

英文摘要: Based on the fluorescent enhancement effect of colloidal photonic crystal (CPC) and metal surface, this project plans to adopt the core-shell structure design, and to couple silver nanoparticles with thermoresponsive microgel for a self-assembled CPC. Subsequently, a new type double-effect fluorescent enhancement functional material is prepared by causing the CPC surface deposition fluorescein dyes. With the aid of structural parameter optimization of the material, an influence law of synergic fluorescence enhancement of CPC and metal affected by responsive core-shell structure assembly will be studied. This project aims to reveal double-effect fluorescent enhancement mechanism of the material using spectra, fluorescent lifetime, dynamic light scattering (DLS) and other testing methods and, to investigate the fluorescence enhancement controllable by measurements of thermoresponsive properties of the material. Additionally, application of identification of heavy metal ions and thermoresponsive sensors is researched. In a word, this project is to provide not only a novel research approach and an experimental basis for preparation of new type fluorescence enhancement controllable optical devices but also to lay a solid foundation for expanding the detection fields of fluorescence enhancement theory.

英文关键词: Core-shell structure;Controllable fluorescent enhancement;Metal enhanced fluorescence;Tunable stopband;Responsive microgel

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关主题
相关VIP内容
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
15+阅读 · 2020年2月6日
Arxiv
10+阅读 · 2018年2月17日
微信扫码咨询专知VIP会员