项目名称: 核壳结构异质结的氧化物纳米线阵列的制备与光电化学制氢研究

项目编号: No.51202186

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 苏进展

作者单位: 西安交通大学

项目金额: 25万元

中文摘要: 在光电化学制氢研究中,目前研究的半导体材料都不能完全满足高效光电化学分解水对半导体的禁带宽度、电子迁移率、带边位置、抗腐蚀性等的所有要求,利用特殊形貌和复合结构可以对材料的性能进行增强或改变,有可能成为光电化制氢研究的突破口。本项目将以导电性好的氧化物半导体制备一维纳米线阵列,并构建核壳结构异质结实现响应光谱的扩展和光生载流子的强化分离,阻止逆反应,实现高效光电化学制氢。首先,利用简单、低成本、无污染的低温溶液法和水热法制备导电性好的一维纳米线阵列,实现可控生长和优化形貌结构;在此基础上生长窄禁带半导体包裹层,构建核壳结构异质结,并进行结构优化和界面缺陷控制;最后,利用先进表征手段,探索半导体光电极内部电荷迁移规律、核壳结构异质载流子强化分离,建立的载流子动力学模型,对核壳结构异质结阵列的制备优化提供指导原则,最终为未来实现高效的太阳能制氢提供新途径。

中文关键词: 光电化学;太阳能;分解水;核壳结构;纳米线

英文摘要: To achieve efficient photoelectrochemical water splitting, the semiconductor photoanode should meet the criteria in terms of band gap, carrier mobility, band edge position, and corrosion resistance. Unfortunately,to date, there is no semiconductor material meets all the requirements simultaneously. Nanostructure and duplex structure can improve or modify the performance of materials significantly and this can be a breakthrough for the photoelectrochemical hydrogen production research. This proposal describe the deposition of core-shell structural heterojunction using one dimensional(1D) metal oxide nanowire arrays with good electron mobility as the core and a conformal coating with narrow band gap semiconductor as shell.This core-shell structural heterojunction extend the activity spectrum to visible light region and improve the separation of photo-excited carriers at the same time and prevent reverse reaction and finally achieve efficient photoelectrochemical water splitting. At first, structural optimized 1D metal oxide nanowire arrays will be deposited with simple, low-cost and clean methods including low temperature solution and hydrothermal method.Then conformal layer of narrow band gap semiconductor will be deposited on the nanowire to form a core-shell heterojunction followed with structural optimization

英文关键词: Photoelectrochemistry;Solar Energy;water splitting;core-shell;Nanowire

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
55+阅读 · 2021年2月22日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
【IJCAI2020】图神经网络预测结构化实体交互
专知会员服务
43+阅读 · 2020年5月13日
Java应用结构规范
阿里技术
0+阅读 · 2022年3月14日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月17日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
相关资讯
Java应用结构规范
阿里技术
0+阅读 · 2022年3月14日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员