项目名称: 基于表面等离子体共振结构的纳米间隙传感方法研究

项目编号: No.61307043

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 李雄

作者单位: 中国科学院光电技术研究所

项目金额: 26万元

中文摘要: 本项目针对现有基于电容、超声波、传输光波等间隙宽度传感方法传感范围无法向纳米量级(百纳米以下)拓展的缺陷,提出一种基于表面等离子体(SP)共振结构的纳米间隙传感方法,该方法利用短程SP倏逝场共振模式在几十纳米量级介质衰减长度范围内对间隙宽度变化非常敏感的特点,将间隙宽度传感范围拓展到纳米量级;同时结合平面光栅激发和反射光谱探测的方法,获得易集成、可实时探测的纳米间隙传感器件。本项目主要研究基于SP共振结构微纳米间隙宽度传感的机理,SP间隙传感器件的结构设计、制备和表征方法,并搭建一套可实现纳米间隙传感的实验装置。本项目研究旨在建立一套新型的、具有自主知识产权的基于SP共振结构微纳间隙宽度传感方法,为纳米加工、纳米测量领域提供一种全新的测试技术;并有望在包括近场光学,近场物理在内的多个研究领域发挥重要作用。

中文关键词: 表面等离子体谐振;纳米间隙传感器;倏逝波;光学器件;

英文摘要: The sensing range of existing gap width sensors based on capacitance, ultrasonic and transmission light, is hard to be extended to nanometre level (less than one hundred nanometres). Aiming at overcoming this limit, a new type of nano-gap width sensing method based on surface plasmon (SP) resonace structure is proposed in this proposal. The new sensing method makes use of the properties that the resonace mode of short range SP wave could be very sensitive with the change of nano gap, and a gap sensor with nanometre level sensing range is realized. Planar grating and reflection spectra is used to excite the SP resonance and test the gap, respectively. So this type of nano gap sensor is integrated and real-time senable. The mechanism of the nano gap sensor based on SP resonance will be studied in this project. The design , fabrication and characterization of the new nano gap sensor will also be investigated. The sensing performances of the sensor will be comfirmed with an experimental system. The object of this project is to establish a noval nano gap sensing method based on SP resonance structure. It has great potential applications in areas, including nano fabrication system, nano testing sytem, near-field optics, near-field physics and so on.

英文关键词: surface plasmon resonance;nano-gap sensor;evanescent wave;optical device;

成为VIP会员查看完整内容
0

相关内容

专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月25日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
67+阅读 · 2021年5月8日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数据结构与算法,770页pdf
专知会员服务
142+阅读 · 2021年4月15日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【泡泡一分钟】点密度适应性点云配准
泡泡机器人SLAM
16+阅读 · 2018年5月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
20+阅读 · 2021年9月21日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
38+阅读 · 2020年3月10日
小贴士
相关VIP内容
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
32+阅读 · 2021年7月25日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
67+阅读 · 2021年5月8日
专知会员服务
33+阅读 · 2021年5月7日
【经典书】数据结构与算法,770页pdf
专知会员服务
142+阅读 · 2021年4月15日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员