项目名称: 嵌段共聚物自组装图案调控贵金属纳米阵列及其表面增强拉曼优化

项目编号: No.51203069

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 有机高分子材料学科

项目作者: 刘元君

作者单位: 江苏科技大学

项目金额: 25万元

中文摘要: 有效的基底是利用表面增强拉曼(SERS)技术进行生物分析和检测的关键前提。已报道的纳米阵列 SERS 基底的制备大多采用刻蚀技术、模板途径或是颗粒膜,难以实现金属阵列的精细调控。本项目以发展高效、稳定的SERS 活性基底为目标,利用嵌段共聚物自组装有序图案薄膜,通过原位化学生长设计构筑各种结构贵金属及合金纳米阵列;通过调制嵌段共聚物的微相分离行为,原位调控贵金属纳米单元阵列的结构、间距及其局域场增强效应,与此同时,筛选贵金属或合金组分,优化其SERS性能;揭示通过嵌段共聚物调控贵金属纳米阵列的一般性规律;探究金属纳米阵列基底中 SERS"热点"分布,揭示贵金属纳米结构阵列的表面增强拉曼特性与阵列结构间的相关性规律。在此基础上,探索贵金属纳米结构阵列基底在病原微生物检测上的潜在应用。课题的完成将为制备高性能SERS基底发展一条简单便捷途径,还可为贵金属纳米阵列的实际应用提供理论和实验基础。

中文关键词: 嵌段共聚物;贵金属;表面增强拉曼;自组装;光化学

英文摘要: One of the key prerequisites for the use of surface-enhanced Raman spectrum (SERS) technology in biological analysis and detection is the preparation of efficient substrates.The reported nanoarrays used as SERS substrates were mostly prepared by lithography technology, template approach or with granule films, which are difficult to be finely modulated. With the goal of developing efficient, stable, and active SERS substrates, this project proposes to design and fabricate metal and alloy nanoarrays using block copolymer self-assembled thin films with ordered pattern and the following in situ chemical growth. We will regulate the structure and spacing of noble metal nanoarrays through the in situ modulation of microphase separation behavior in block copolymer and will concomitantly filter noble metals or alloys, aiming at tuning of the local field enhancement effect, and so optimising of their SERS performances.It is also intended to reveal the general regulation rule of noble metal nanoarrays through block copolymers, to explore the "hot spots" distribution and the relation between the structure of noble metal nanoarrays and their SERS properties. Based on the above research, we plans to explore the potential application of the noble metal nanoarrays in the detection of pathogenic microorganism. The completion of

英文关键词: block copolymer;Nobel Metal;SERS;Self-assembly;Photochemical

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】 Dropout在图像超分任务中的重煥新生
专知会员服务
18+阅读 · 2022年3月5日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
21+阅读 · 2021年3月9日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
18+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
17+阅读 · 2021年12月21日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
【CVPR2022】 Dropout在图像超分任务中的重煥新生
专知会员服务
18+阅读 · 2022年3月5日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
21+阅读 · 2021年3月9日
小米在预训练模型的探索与优化
专知会员服务
18+阅读 · 2020年12月31日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员