Recent studies show that pre-trained language models (LMs) are vulnerable to textual adversarial attacks. However, existing attack methods either suffer from low attack success rates or fail to search efficiently in the exponentially large perturbation space. We propose an efficient and effective framework SemAttack to generate natural adversarial text by constructing different semantic perturbation functions. In particular, SemAttack optimizes the generated perturbations constrained on generic semantic spaces, including typo space, knowledge space (e.g., WordNet), contextualized semantic space (e.g., the embedding space of BERT clusterings), or the combination of these spaces. Thus, the generated adversarial texts are more semantically close to the original inputs. Extensive experiments reveal that state-of-the-art (SOTA) large-scale LMs (e.g., DeBERTa-v2) and defense strategies (e.g., FreeLB) are still vulnerable to SemAttack. We further demonstrate that SemAttack is general and able to generate natural adversarial texts for different languages (e.g., English and Chinese) with high attack success rates. Human evaluations also confirm that our generated adversarial texts are natural and barely affect human performance. Our code is publicly available at https://github.com/AI-secure/SemAttack.


翻译:最近的研究显示,受过训练的语言模型(LMS)很容易受到文字对抗性攻击,但是,现有的攻击方法要么受到攻击成功率低的打击率,要么未能在极大扰动空间中有效搜索。我们建议建立一个高效和有效的SemAttack框架,通过建立不同的语义性扰动功能产生自然对抗文字。特别是,SemAttack优化了在通用语义空间,包括打字空间、知识空间(如WordNet)和背景化语义空间(如BERT集群嵌入空间)上产生的扰动障碍,或者这些空间的结合。因此,产生的对抗性文字在语义上更加接近原始输入。广泛的实验显示,目前状态(SOTA)大型语言(如DeBERTA-v2)和防御战略(如FreeLB)都仍然易受SemAttack的伤害。我们进一步表明,SemAttack是一般的,能够生成自然对抗性对立性文字,A.在不同的语言上也很难确认我们所制作的英语和人类攻击率。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员