项目名称: 四元数体上的核分类器及其在特征级信息融合中的应用研究

项目编号: No.61201399

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电子学与信息系统

项目作者: 王志芳

作者单位: 黑龙江大学

项目金额: 26万元

中文摘要: 分类器设计是影响特征级信息融合性能的重要因素,传统方法大多将多源数据简单处理后仍视作单一源数据进行分类,未能充分利用多源数据的类别信息。四元数体是实数域和复数域的自然扩充,经典分类器在四元数体上的推广可得到直接处理最多四路输入的分类器。本项目针对四元数体上非线性可分问题展开研究,首先依据四元数体上多源信息融合模型,提出多源信息归一化和距离度量方案;进而针对四元数不满足乘法交换律的特性,研究四元数体上的四元数矩阵正交特征向量系求解的高效算法,并构造四元数体上的核函数;在此基础上,推导四元数核散度矩阵,提出四元数体上的核分类算法;最后,通过多模态生物特征的融合问题进一步完善四元数体上核分类器的应用细节,验证四元数核分类器的性能。目前,基于四元数的分类器研究尚处于起步阶段,而四元数体上非线性核分类器更有待深入探讨。本项目的研究成果将推进核方法的研究,为信息融合技术提供新型的数据处理和分类手段。

中文关键词: 多特征融合;特征匹配;多模态生物特征识别;核分类器;四元数

英文摘要: The designing of classifier is an extremely important factor to influence the performance of feature-level information fusion. The traditional methods still take the simple processed multi-source datum as a single-source data which can not take full advantage of the category information comed from the multi-source datum. So the research of the classifier which can directly input the multi-source datum is quite meaningful for the feature-level information fusion. The quaternion field is a natural extension of the real number field and the complex field, so the quaternion-based classifier supporting four input can be extended from the classic classifier. The project focuses on the nonlinear classification problems in quaternion field and and investigates the following topics: Firstly, to propose the optimal schemes for the normalization of feature vector and measurement of the similarity in quaternion field based on the fusion mode of the quaternion field. Then, to investigate the fast algorithms on solving the orthogonal eigenvectors of the quaternion matrix and construct the kernel function for the designing of the kernel-based classifier aiming at the characteristic that dissatisfies the commutative property of multiplication. Thirdly, to deduce the kernel scatter matrix and extend the kernel-based classifiers

英文关键词: Multi-feature fusion;Feature matching;Multimodal biometric recognition;Kernel-based classifier;Quaternion

成为VIP会员查看完整内容
0

相关内容

专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
79+阅读 · 2021年2月16日
基于深度学习的数据融合方法研究综述
专知会员服务
136+阅读 · 2020年12月10日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
专知会员服务
45+阅读 · 2020年11月13日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
35+阅读 · 2020年4月15日
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
对抗子空间维度探讨
PaperWeekly
0+阅读 · 2022年2月13日
多任务学习漫谈:以损失之名
PaperWeekly
1+阅读 · 2022年1月26日
一文速览机器学习的类别
极市平台
0+阅读 · 2021年10月31日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
综述 | 异质信息网络分析与应用综述
专知
27+阅读 · 2020年8月8日
标签间相关性在多标签分类问题中的应用
人工智能前沿讲习班
22+阅读 · 2019年6月5日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
小贴士
相关VIP内容
专知会员服务
40+阅读 · 2021年7月24日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
79+阅读 · 2021年2月16日
基于深度学习的数据融合方法研究综述
专知会员服务
136+阅读 · 2020年12月10日
【博士论文】辨识性特征学习及在细粒度分析中的应用
专知会员服务
29+阅读 · 2020年12月10日
专知会员服务
45+阅读 · 2020年11月13日
多源数据行人重识别研究综述
专知会员服务
40+阅读 · 2020年11月2日
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
35+阅读 · 2020年4月15日
相关资讯
【TPAMI2022】关联关系驱动的多模态分类
专知
3+阅读 · 2022年3月22日
对抗子空间维度探讨
PaperWeekly
0+阅读 · 2022年2月13日
多任务学习漫谈:以损失之名
PaperWeekly
1+阅读 · 2022年1月26日
一文速览机器学习的类别
极市平台
0+阅读 · 2021年10月31日
光学遥感图像目标检测算法综述
专知
8+阅读 · 2021年3月23日
综述 | 异质信息网络分析与应用综述
专知
27+阅读 · 2020年8月8日
标签间相关性在多标签分类问题中的应用
人工智能前沿讲习班
22+阅读 · 2019年6月5日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员