项目名称: 结合同步辐射实验和第一性原理的理论对半晶化过程中的晶体结构,电子结构和热力学性质进行研究
项目编号: No.U1532124
项目类型: 联合基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 柯学志
作者单位: 华东师范大学
项目金额: 48万元
中文摘要: 最近,通过第一性原理的理论计算和实验相结合的办法,我们对一类Cu基材料进行了研究,结果表明:因Cu原子具有比较平坦的势能面,当温度升高时, Cu原子将变为无序的状态(融化状态), 而其它原子还处在一般的晶体振动状态(束缚的状态),因此该材料部分处在晶态,而局部处在液态的有趣的“半晶态”状态。处在“半晶态”的材料会表现出反常的热输运行为和极低晶格热导率等。当前,有关这类材料的研究比较少,特别是随温度升高时,局部从有序到无序的原子变化过程,及其在此过程中电子结构和热力学性质的变化情况尤为重要,这些性质与能源材料的转换效率密切相关。因常规仪器和测量手段无法满足这些工作的需要,而同步辐射实验技术可以帮助实现对这些关键参数的测量(特别是PDF, XAFS,ARPES和RIXS等手段),所以本项目计划结合同步辐射技术和第一性原理的理论计算来研究这些问题。
中文关键词: 第一性原理的理论计算;同步辐射;晶体结构;电子结构
英文摘要: Recently, we studied the structural and bonding properties of Cu-based materials by means of first-principles calculations and experimental measurement. The results demonstrate that Cu atoms are embedded in a flattened potential energy surface due to the weak bonding interaction with the framework. This leads to quite large atom displacement parameters (ADPs) for Cu atoms, and the ADPs are so large that the corresponding Cu-sublattice can be considered to be “melted”. This “melted” phenomenon also can be observed from finite-temperature molecular dynamics simulations. As a result, the Cu sublattice can be regarded as “melting sublattice” and the whole system is thus in a mixed part-crystalline part-liquid state, containing a crystalline rigid part and a fluctuating noncrystalline substructure (Cu sublattice). Concerning this state, currently, the pair distribution function, the electronic structure, and thermodynamic properties as a function of temperature have rarely been studied. These properties are important for understanding and tuning the conversion efficiency of energy materials. Since conventional instruments and measurements can not meet the needs of the current job, the synchrotron radiation techniques including PDF, XAFS,ARPES and RIXS etc. are the key to measure these important parmateters. In this project, we plan to study these properties by combining first-principles calculations with synchrotron techniques.
英文关键词: First-principles calculations;synchrotron radiation techniques ;Crystal structure;Electronic structure