项目名称: 分根交替灌溉诱导马铃薯抗旱生理机制及关键基因的功能分析

项目编号: No.31501358

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 食品科学、农学基础与作物学

项目作者: 宿飞飞

作者单位: 黑龙江省农业科学院

项目金额: 20万元

中文摘要: 马铃薯是世界第四大粮食作物,水分是影响其产量的关键因素。科学的抗旱节水灌溉对于提高植株抗旱性,减少水资源浪费,提高作物产量十分重要。分根交替灌溉(partial root-zone drying PRD)是对不同区域根系干湿交替灌溉,以局部、适度干旱作用于作物根系,由此产生干旱信号诱导植物体相应基因活化,提高植株抗旱性,但其反应机制尚不清楚。本项目拟在马铃薯营养前期进行分根交替灌溉,通过分析对抗氧化酶活性、渗透调节及光合特性的影响,系统阐明PRD提高马铃薯生理活性机制;利用转录组测序(RNA-seq)研究在转录水平上的基因表达,筛选差异表达基因并进行功能注释、富集分析和代谢通路分析,获得与马铃薯PRD抗旱相关的关键基因,利用RACE方法克隆关键基因,进行生物学功能分析,初步阐明这些关键基因在马铃薯PRD诱导抗旱反应中的分子调控机制。本研究为马铃薯分子抗旱育种和实施抗旱节水灌溉提供理论依据。

中文关键词: 马铃薯;干旱诱导;生理机制;信号转导;分子机制

英文摘要: Potato is the world's fourth largest food crop, and water is the key factor that influences potato yield. Scientific water-saving irrigation is very important for improving the drought resistance, reducing waste of resources and increasing crop yields. Partial root-zone drying(PRD) means dry-wet alternately irrigating in different areas of the root system, and local and moderate drought signals applying on roots. Xerophytic signal induces related plant gene activation, and leads to improvement of plant drought-resistance level correspondingly, however, the reaction mechanism is still unclear. This project aims to analyze the effects on the activity of antioxidant enzymes, osmotic regulation and photosynthetic characteristics, so as to determine the mechanisms of PRD improving crop physiological activity in the early potato growth stage. Meanwhile, to obtain the key xeric response genes of PRD by using transcriptome sequencing (RNA-seq) of potato gene expression at the transcriptional level, to screen differentially expressed genes and functional annotation, enrichment analysis and metabolic pathway analysis. Preliminary clarify molecular mechanisms of key xeric genes in potato drought reactions by using RACE device and verify the biological functions of the genes. Therefore, this study has important scientific and practical significance for potato drought-resistant breeding and water-saving irrigation technology application.

英文关键词: Potato(Solanum tuberonum L.);Drought induced;Physiological Mechanism;Signal transduction;Molecular mechanism

成为VIP会员查看完整内容
0

相关内容

数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
专知会员服务
18+阅读 · 2021年8月15日
专知会员服务
64+阅读 · 2021年7月25日
专知会员服务
109+阅读 · 2021年4月7日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
工业人工智能的关键技术及其在预测性维护中的应用现状
专知会员服务
93+阅读 · 2020年10月30日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2022年4月19日
小贴士
相关VIP内容
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
专知会员服务
18+阅读 · 2021年8月15日
专知会员服务
64+阅读 · 2021年7月25日
专知会员服务
109+阅读 · 2021年4月7日
【AAAI2021最佳论文】多智能体学习中的探索 - 利用
专知会员服务
35+阅读 · 2021年2月6日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
工业人工智能的关键技术及其在预测性维护中的应用现状
专知会员服务
93+阅读 · 2020年10月30日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员