项目名称: 基于InP基异变缓冲层的3微米波长新结构激光器研究

项目编号: No.61204133

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 顾溢

作者单位: 中国科学院上海微系统与信息技术研究所

项目金额: 28万元

中文摘要: 中红外波段激光器不仅具有丰富的有待认知的物理内涵而且在环境保护、人口健康和国家社会安全方面有重要的应用。GaSb基锑化物激光器和InP基量子级联激光器已取得重大进展,但其在中红外短波端3微米波长附近均受到一些限制。本项目提出基于InP基异变缓冲层特殊复合衬底研究不含锑3 微米波长新结构量子阱激光器。在前期预研工作中已观测到InP基异变缓冲层上的量子阱结构室温光致发光波长达3.05微米,证明了此项目思路的可行性。本项目研究内容包括材料物理分析与缓冲层结构设计、材料生长优化、激光器结构设计与器件研究。针对起关键核心作用的异变缓冲层材料进行重点研究,采用数字合金位错隔离层创新结构、探索迁移增强外延生长初始层并结合剩余应力调控,深入开展原子迁移、晶格弛豫和穿透位错产生、抑制、湮灭的行为及机理研究,进一步基于优化的InP基异变缓冲层开展无锑3微米波长原型量子阱激光器研究。

中文关键词: 异变缓冲层;InP基;量子阱激光器;中红外;气态源分子束外延

英文摘要: Mid-infrared lasers include luxuriant unknown physical treasures to be unearthed and have many important applications, including environment protection, human health, social security and so on. Many significant improvements have been obtained for mid-infrared GaSb-based antimony-contained lasers and InP-based quantum cascade lasers; however for the emission wavelength around 3 μm these two kinds of lasers both encounter some drawbacks and limits. This project proposes a new way to demonstrate antimony-free quantum well lasers around 3 μm on InP-based metamorphic buffers. In our former study the photoluminescence wavelength of InP-based metamorphic quantum wells at 3.05 μm has been achieved, which proves the feasibility of this project. The research of this project will include material physics analysis and buffer structure design, epitaxy optimization, as well as the laser structure design and study. The improvement of metamorphic buffer, which plays a crucial role of laser study, will be focused on. The behavior and mechanism of atomic migration, lattice relaxation, as well as the production, suppression and annihilation of dislocations will be studied in detail. The introduction of digital alloy novel dislocation filter structure, migration enhanced epitaxy scheme and the residual strain control is expected to

英文关键词: metamorphic buffer;InP-based;quantum well lasers;mid-infrared;gas source molecular beam epitaxy

成为VIP会员查看完整内容
0

相关内容

双碳目标对中国经济的影响及风险挑战,61页ppt
专知会员服务
59+阅读 · 2022年1月17日
【NeurIPS2021】对比主动推理
专知会员服务
27+阅读 · 2021年10月21日
专知会员服务
7+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
135+阅读 · 2021年3月13日
这次遥控大脑实验成功了,却把网友们吓坏了
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
0+阅读 · 2022年4月28日
小贴士
相关VIP内容
双碳目标对中国经济的影响及风险挑战,61页ppt
专知会员服务
59+阅读 · 2022年1月17日
【NeurIPS2021】对比主动推理
专知会员服务
27+阅读 · 2021年10月21日
专知会员服务
7+阅读 · 2021年10月4日
专知会员服务
28+阅读 · 2021年8月16日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
135+阅读 · 2021年3月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员