项目名称: 新型统计计算方法在医学影像数据分析中的应用

项目编号: No.11271121

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 郭水霞

作者单位: 湖南师范大学

项目金额: 65万元

中文摘要: 本项目是统计方法在医学影像数据分析中的应用,基于中南大学湘雅医院提供的数据,拟从下列几个方面进行研究。(1)希望提出一种全局化的方法对大脑网络进行分析,从全脑角度寻找精神病患者和正常人之间存在显著差别的功能连接或回路,并结合患者的病程、病情严重程度等信息利用统计方法分析差别存在的原因,该方法是由数据直接驱动的,避免了先验知识的选择;(2)大脑的不同脑区可以看做是一个离散状态马氏链,我们将利用马氏链的性质研究大脑网络的动力学性质,对脑区的聚类方法进行改进;(3)由于大脑各脑区之间并不是独立的,以往利用独立双样本t检验的方法选择特征的时候会"淹没"一些信息,我们希望研究一种算法一次性将全部有用的特征提取出来,而这也有利于提高判别精度;(4)由于大脑连接网络不是一成不变的,我们将利用时变因果关系建立大脑模型,考虑脑区之间的关联性随时间变化的规律,并比较正常人和病人在连接强度和连接方向上的主要差异

中文关键词: 功能连接网络;判别分析;Granger因果关系;功能磁共振;

英文摘要: This project is the application of statistical methods to medical image data, based on the data provided by the second Xiangya Hospital, Central South University. We will study it in the following aspects.(1) We want to propose a global way to analyze the brain network, and to find out the significant different links or circuit between patients and healthy controls. Considering such information as illness duration, positive and negative syndrome scale, we will analyse the cause of this difference. Because of not using the prior knowledge, this method is driven by data rather than by hypothesis, hence more reasonable. (2)Essentially, different brain regions make up a discrete Markov chain. We will study the dynamic properties of brain network and make improvement to the current clustering methods. (3)As different brain regions are not independent, some information will be discarded by using common two sample t tests to select significant features. We want to propose a new method to select the optimal subset of the brain regions at one time. We hope the features thus selected can be used to improve the classification accuracy considerably. (4) As the links of the brain are not unchangeable, we will construct the barin network by using time-varying Granger causality, consider the relevance between the brain netw

英文关键词: functional connectivity;discriminative analysis;Granger causality;fMRI;

成为VIP会员查看完整内容
0

相关内容

因果推断在医药图像的应用:数据缺失和数据不匹配
专知会员服务
57+阅读 · 2022年4月2日
专知会员服务
122+阅读 · 2021年4月29日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
专知会员服务
79+阅读 · 2021年2月16日
基于机器学习的数据库技术综述
专知会员服务
54+阅读 · 2021年1月2日
专知会员服务
123+阅读 · 2020年11月15日
高效医疗图像分析的统一表示
专知会员服务
34+阅读 · 2020年6月23日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
医学图像数据读取及预处理方法总结
极市平台
22+阅读 · 2022年1月4日
CNN网络结构的发展(最全整理)
极市平台
73+阅读 · 2019年11月2日
关于GANs在医学图像领域应用的总结
人工智能前沿讲习班
31+阅读 · 2019年6月4日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
31+阅读 · 2021年3月29日
A Multi-Objective Deep Reinforcement Learning Framework
小贴士
相关VIP内容
因果推断在医药图像的应用:数据缺失和数据不匹配
专知会员服务
57+阅读 · 2022年4月2日
专知会员服务
122+阅读 · 2021年4月29日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
专知会员服务
79+阅读 · 2021年2月16日
基于机器学习的数据库技术综述
专知会员服务
54+阅读 · 2021年1月2日
专知会员服务
123+阅读 · 2020年11月15日
高效医疗图像分析的统一表示
专知会员服务
34+阅读 · 2020年6月23日
相关资讯
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
医学图像数据读取及预处理方法总结
极市平台
22+阅读 · 2022年1月4日
CNN网络结构的发展(最全整理)
极市平台
73+阅读 · 2019年11月2日
关于GANs在医学图像领域应用的总结
人工智能前沿讲习班
31+阅读 · 2019年6月4日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员