CNN网络结构的发展(最全整理)

2019 年 11 月 2 日 极市平台

加入极市专业CV交流群,与6000+来自腾讯,华为,百度,北大,清华,中科院等名企名校视觉开发者互动交流!更有机会与李开复老师等大牛群内互动!

同时提供每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流。关注 极市平台 公众号 ,回复 加群,立刻申请入群~


作者:zzq

来源:https://zhuanlan.zhihu.com/p/68411179

本文已经作者授权,转载请联系原作者


CNN基本部件介绍


1. 局部感受野


在图像中局部像素之间的联系较为紧密,而距离较远的像素联系相对较弱。因此,其实每个神经元没必要对图像全局进行感知,只需要感知局部信息,然后在更高层局部信息综合起来即可得到全局信息。卷积操作即是局部感受野的实现,并且卷积操作因为能够权值共享,所以也减少了参数量。


2. 池化


池化是将输入图像进行缩小,减少像素信息,只保留重要信息,主要是为了减少计算量。主要包括最大池化和均值池化。


3. 激活函数


激活函数的用是用来加入非线性。常见的激活函数有sigmod, tanh, relu,前两者常用在全连接层,relu常见于卷积层


4. 全连接层


全连接层在整个卷积神经网络中起分类器的作用。在全连接层之前需要将之前的输出展平



经典网络结构


1. LeNet5


由两个卷积层,两个池化层,两个全连接层组成。卷积核都是5×5,stride=1,池化层使用maxpooling

2. AlexNet

模型共八层(不算input层),包含五个卷积层、三个全连接层。最后一层使用softmax做分类输出


AlexNet使用了ReLU做激活函数;防止过拟合使用dropout和数据增强;双GPU实现;使用LRN

3. VGG

全部使用3×3卷积核的堆叠,来模拟更大的感受野,并且网络层数更深。VGG有五段卷积,每段卷积后接一层最大池化。卷积核数目逐渐增加。


总结:LRN作用不大;越深的网络效果越好;1×1的卷积也很有效但是没有3×3好

4. GoogLeNet(inception v1)


从VGG中我们了解到,网络层数越深效果越好。但是随着模型越深参数越来越多,这就导致网络比较容易过拟合,需要提供更多的训练数据;另外,复杂的网络意味更多的计算量,更大的模型存储,需要更多的资源,且速度不够快。GoogLeNet就是从减少参数的角度来设计网络结构的。


GoogLeNet通过增加网络宽度的方式来增加网络复杂度,让网络可以自己去应该如何选择卷积核。这种设计减少了参数 ,同时提高了网络对多种尺度的适应性。使用了1×1卷积可以使网络在不增加参数的情况下增加网络复杂度。

Inception-v2

在v1的基础上加入batch normalization技术,在tensorflow中,使用BN在激活函数之前效果更好;将5×5卷积替换成两个连续的3×3卷积,使网络更深,参数更少

Inception-v3

核心思想是将卷积核分解成更小的卷积,如将7×7分解成1×7和7×1两个卷积核,使网络参数减少,深度加深

Inception-v4结构

引入了ResNet,使训练加速,性能提升。但是当滤波器的数目过大(>1000)时,训练很不稳定,可以加入activate scaling因子来缓解

5. Xception

在Inception-v3的基础上提出,基本思想是通道分离式卷积,但是又有区别。模型参数稍微减少,但是精度更高。Xception先做1×1卷积再做3×3卷积,即先将通道合并,再进行空间卷积。depthwise正好相反,先进行空间3×3卷积,再进行通道1×1卷积。核心思想是遵循一个假设:卷积的时候要将通道的卷积与空间的卷积进行分离。而MobileNet-v1用的就是depthwise的顺序,并且加了BN和ReLU。Xception的参数量与Inception-v3相差不大,其增加了网络宽度,旨在提升网络准确率,而MobileNet-v1旨在减少网络参数,提高效率。

6. MobileNet系列

V1

使用depthwise separable convolutions;放弃pooling层,而使用stride=2的卷积。标准卷积的卷积核的通道数等于输入特征图的通道数;而depthwise卷积核通道数是1;还有两个参数可以控制,a控制输入输出通道数;p控制图像(特征图)分辨率。

V2

相比v1有三点不同:1.引入了残差结构;2.在dw之前先进行1×1卷积增加feature map通道数,与一般的residual block是不同的;3.pointwise结束之后弃用ReLU,改为linear激活函数,来防止ReLU对特征的破环。这样做是因为dw层提取的特征受限于输入的通道数,若采用传统的residual block,先压缩那dw可提取的特征就更少了,因此一开始不压缩,反而先扩张。但是当采用扩张-卷积-压缩时,在压缩之后会碰到一个问题,ReLU会破环特征,而特征本来就已经被压缩,再经过ReLU还会损失一部分特征,应该采用linear。

V3

互补搜索技术组合:由资源受限的NAS执行模块集搜索,NetAdapt执行局部搜索;网络结构改进:将最后一步的平均池化层前移并移除最后一个卷积层,引入h-swish激活函数,修改了开始的滤波器组。

V3综合了v1的深度可分离卷积,v2的具有线性瓶颈的反残差结构,SE结构的轻量级注意力模型。

7. EffNet

EffNet是对MobileNet-v1的改进,主要思想是:将MobileNet-1的dw层分解层两个3×1和1×3的dw层,这样 第一层之后就采用pooling,从而减少第二层的计算量。EffNet比MobileNet-v1和ShuffleNet-v1模型更小,进度更高。

8. EfficientNet

研究网络设计时在depth, width, resolution上进行扩展的方式,以及之间的相互关系。可以取得更高的效率和准确率。

9. ResNet

VGG证明更深的网络层数是提高精度的有效手段,但是更深的网络极易导致梯度弥散,从而导致网络无法收敛。经测试,20层以上会随着层数增加收敛效果越来越差。ResNet可以很好的解决梯度消失的问题(其实是缓解,并不能真正解决),ResNet增加了shortcut连边。

10. ResNeXt

基于ResNet和Inception的split+transform+concate结合。但效果却比ResNet、Inception、Inception-ResNet效果都要好。可以使用group convolution。一般来说增加网络表达能力的途径有三种:1.增加网络深度,如从AlexNet到ResNet,但是实验结果表明由网络深度带来的提升越来越小;2.增加网络模块的宽度,但是宽度的增加必然带来指数级的参数规模提升,也非主流CNN设计;3.改善CNN网络结构设计,如Inception系列和ResNeXt等。且实验发现增加Cardinatity即一个block中所具有的相同分支的数目可以更好的提升模型表达能力。

11. DenseNet

DenseNet通过特征重用来大幅减少网络的参数量,又在一定程度上缓解了梯度消失问题。

12. SqueezeNet

提出了fire-module:squeeze层+expand层。Squeeze层就是1×1卷积,expand层用1×1和3×3分别卷积,然后concatenation。squeezeNet参数是alexnet的1/50,经过压缩之后是1/510,但是准确率和alexnet相当。

13. ShuffleNet系列

V1

通过分组卷积与1×1的逐点群卷积核来降低计算量,通过重组通道来丰富各个通道的信息。Xception和ResNeXt在小型网络模型中效率较低,因为大量的1×1卷积很耗资源,因此提出逐点群卷积来降低计算复杂度,但是使用逐点群卷积会有副作用,故在此基础上提出通道shuffle来帮助信息流通。虽然dw可以减少计算量和参数量,但是在低功耗设备上,与密集的操作相比,计算、存储访问的效率更差,故shufflenet上旨在bottleneck上使用深度卷积,尽可能减少开销。

V2

使神经网络更加高效的CNN网络结构设计准则:

输入通道数与输出通道数保持相等可以最小化内存访问成本

分组卷积中使用过多的分组会增加内存访问成本

网络结构太复杂(分支和基本单元过多)会降低网络的并行程度

element-wise的操作消耗也不可忽略

14. SENet

15. SKNet



-End-


*延伸阅读





CV细分方向交流群


添加极市小助手微信(ID : cv-mart),备注:研究方向-姓名-学校/公司-城市(如:目标检测-小极-北大-深圳),即可申请加入目标检测、目标跟踪、人脸、工业检测、医学影像、三维&SLAM、图像分割等极市技术交流群(已经添加小助手的好友直接私信),更有每月大咖直播分享、真实项目需求对接、干货资讯汇总,行业技术交流一起来让思想之光照的更远吧~



△长按添加极市小助手


△长按关注极市平台


觉得有用麻烦给个在看啦~  

登录查看更多
73

相关内容

在数学(特别是功能分析)中,卷积是对两个函数(f和g)的数学运算,产生三个函数,表示第一个函数的形状如何被另一个函数修改。 卷积一词既指结果函数,又指计算结果的过程。 它定义为两个函数的乘积在一个函数反转和移位后的积分。 并针对所有shift值评估积分,从而生成卷积函数。
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
26+阅读 · 2020年5月7日
【Google】利用AUTOML实现加速感知神经网络设计
专知会员服务
30+阅读 · 2020年3月5日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
272+阅读 · 2020年1月1日
【EMNLP2019教程】端到端学习对话人工智能,附237页PPT下载
专知会员服务
70+阅读 · 2019年11月25日
2019年人工智能行业现状与发展趋势报告,52页ppt
专知会员服务
123+阅读 · 2019年10月10日
卷积神经网络四种卷积类型
炼数成金订阅号
18+阅读 · 2019年4月16日
图像分类:常用分类网络结构(附论文下载)
极市平台
13+阅读 · 2019年4月8日
卷积神经网络简明教程
论智
8+阅读 · 2018年8月24日
深度剖析卷积神经网络
云栖社区
7+阅读 · 2018年5月27日
干货 | 卷积神经网络入门这一篇就够了
数盟
6+阅读 · 2018年1月18日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【发展历程】从LeNet-5到DenseNet
GAN生成式对抗网络
3+阅读 · 2017年11月20日
干货 | 深度学习之卷积神经网络(CNN)的模型结构
机器学习算法与Python学习
12+阅读 · 2017年11月1日
[深度学习] AlexNet,GoogLeNet,VGG,ResNet简化版
机器学习和数学
20+阅读 · 2017年10月13日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
5+阅读 · 2018年10月11日
Arxiv
5+阅读 · 2018年9月11日
Arxiv
5+阅读 · 2017年4月12日
VIP会员
相关资讯
卷积神经网络四种卷积类型
炼数成金订阅号
18+阅读 · 2019年4月16日
图像分类:常用分类网络结构(附论文下载)
极市平台
13+阅读 · 2019年4月8日
卷积神经网络简明教程
论智
8+阅读 · 2018年8月24日
深度剖析卷积神经网络
云栖社区
7+阅读 · 2018年5月27日
干货 | 卷积神经网络入门这一篇就够了
数盟
6+阅读 · 2018年1月18日
深度学习之CNN简介
Python技术博文
20+阅读 · 2018年1月10日
【发展历程】从LeNet-5到DenseNet
GAN生成式对抗网络
3+阅读 · 2017年11月20日
干货 | 深度学习之卷积神经网络(CNN)的模型结构
机器学习算法与Python学习
12+阅读 · 2017年11月1日
[深度学习] AlexNet,GoogLeNet,VGG,ResNet简化版
机器学习和数学
20+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员