项目名称: 微型光纤压力传感器的研究

项目编号: No.61307061

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 葛益娴

作者单位: 南京信息工程大学

项目金额: 23万元

中文摘要: 本项目主要研究基于MEMS工艺的微型光纤压力传感器的设计、制作及其测试。提出用光纤技术和微细加工技术相结合制作压力传感器,传感原理主要基于法布里-珀罗多光束干涉,外界压力作用在敏感膜上引起FP腔长发生变化,从而导致反射光谱发生变化,通过追踪反射光谱的变化测试出所加外界压力的大小。压力敏感膜采用硅为基底的台面膜结构,建立台面膜的力学模型,推导膜的最大挠度公式。ANSYS仿真模拟平面膜与台面膜受压后挠度变化曲线,并对其进行平行度分析,分析信号平均效应对两种膜型的影响。避免了膜片产生非平动变化,降低信号平均效应产生的影响。采用MEMS工艺制作压力敏感膜,湿法腐蚀工艺在硼硅酸盐光纤端面制作凹腔。敏感膜与光纤通过阳极键合工艺粘结在一起。建立测试系统,采用波长法解调反射谱信号。研制的传感器直接加工在光纤上,体积小,适用于强电磁干扰、易燃易爆等恶劣环境,在石油化工和航空航天领域有广泛应用前景。

中文关键词: 光纤传感;MEMS;压力传感器;法布里-珀罗干涉;峰值解调

英文摘要: The design, fabrication and testing of miniature fiber optic pressure sensor based on MEMS technology is mainly studied. The combination of optical fiber technology and microfabrication technology to the production of pressure sensors is proposed. The principle of pressure measurement based on Fabry - Perot multiple beam interference, the FP cavity length changes when loaded the pressure, resulting in the reflectance spectrum changes by tracking the change of the reflectance spectra to test the size of the applied external pressure. The structure of pressure-sensitive diaphragm using the mesa-diaphragm based on silicon substrate, the mechanical model derived the formula of the maximum deflection of the membrane. Both the deflections and the parallelism of the planar and mesa diaphragm are simulated by ANSYS. The average effect of the two membrane-type is analyzed, which declares that the mesa diaphragm is superior to the planar one on the parallelism and can reduce the signal averaging effect. The diaphragm is fabricated by the MEMS techniques, the wet etching process to create cavities in borosilicate fiber end face. Sensitive film and fiber bonded together by anodic bonding process.The test system is carried out and the reflection spectrum of the signal are demodulated by wavelength demodulation. The proposed

英文关键词: optical fiber;MEMS;pressure sensor;Fbary-Perot interference;peak demodulation

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
12+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
63+阅读 · 2022年3月20日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【CVPR2021】自监督几何感知
专知会员服务
46+阅读 · 2021年3月6日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年10月22日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
12+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
63+阅读 · 2022年3月20日
专知会员服务
23+阅读 · 2021年9月20日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
22+阅读 · 2021年8月23日
【CVPR2021】自监督几何感知
专知会员服务
46+阅读 · 2021年3月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员