项目名称: 新型石墨烯/酞菁功能复合材料的制备及其气敏特性的研究

项目编号: No.51202061

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 无机非金属材料学科

项目作者: 王彬

作者单位: 黑龙江大学

项目金额: 25万元

中文摘要: 由于石墨烯独特的二维纳米结构、大的比表面积、高的电导率、载流子迁移率和显著的理化性质,成为气体传感器领域最具有应用前景的气敏材料之一。但恢复时间慢、选择性差、溶解性和分散性不理想及成膜性手段受限等问题亟待解决,功能化修饰石墨烯是改善其气敏性能的有效途径。本项目拟通过具有氨基、羧基、羟基、磺酸基等活性基团的酞菁与表面功能化的石墨烯通过共价键作用,制备共价键型石墨烯/酞菁复合材料;以石墨烯与具有特定活性基团酞菁之间的π-π作用、氢键或静电力为作用力,将酞菁分子定向排列和组装在石墨烯表面上,制备非共价键型石墨烯/酞菁复合材料。设计构筑其电阻式和MEMS微气体传感器件,系统研究并优化材料对NO2和NH3等有害气体的敏感性能,结合理论计算方法,揭示石墨烯与酞菁之间相互作用本质、材料结构与性能的构效关系、材料与气体分子间作用机理,为高灵敏度、选择性新型石墨烯/酞菁复合气敏材料的开发研究提供理论依据。

中文关键词: 石墨烯;酞菁;复合材料;气敏特性;

英文摘要: Graphene, a two-dimensional(2D) sp2-bonded structure, has been demonstrated as a promising gas sensing material in gas sensor area because of its unique nanostructure, large surface area, extremely high electrical conductivity, carrier mobility and outstanding physicochemical property. But slow recovery time, poor selectivity, solubility and dispersibility and the limit of film forming method may be needed to solve. It is an effective method to improve the gas sensitivity of graphene by chemical or physical functionalization. This project is to prepare novel graphene/phthalocyanine hybrids by covalent and noncovalent methods. Covalent bonding hybrids, joined by covalent bonds, can be prepared by reaction of the phthalocyanines containing specific amido, carboxy, hydroxy and sulfo substituents with functionalized graphene. Noncovalent bonding hybrids can be prepared either by the strong interactions between delocalized π-electrons of graphene and those in phthalocyanines, or by hydrogen bonding or electrostatic interactions between the specific substituents of phthalocyanine and the modified parts of the gaphene surface. The chemiresistive and MEMS gas sensor can be designed, and the gas sensing properties of hybrid films to toxic gases (NO2 and NH3) will also be studied and optimized. In combination with the th

英文关键词: graphene;phthalocyanine;hybrids;gas sensitivity;

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
215+阅读 · 2021年8月2日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
33+阅读 · 2021年5月7日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
71+阅读 · 2019年10月18日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
46+阅读 · 2021年10月4日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
215+阅读 · 2021年8月2日
【干货书】线性代数及其应用,688页pdf
专知会员服务
168+阅读 · 2021年6月10日
专知会员服务
33+阅读 · 2021年5月7日
【上海交大】半监督学习理论及其研究进展概述
专知会员服务
71+阅读 · 2019年10月18日
相关资讯
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员