项目名称: 能量回馈型超声波电机的构造理论与关键技术研究

项目编号: No.51277165

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 电工技术

项目作者: 王光庆

作者单位: 浙江工商大学

项目金额: 76万元

中文摘要: 超声波电机的优良特性使其在微型机器人的驱动控制中得到广泛的应用。由于受其摩擦驱动机理的限制,超声波电机的能量转换效率低,这严重限制了它在许多有限能量场合中的应用,如密封恶劣环境中工作的微型机器人。因此,研究振动能量采集与回馈的方法将超声波电机的振动能量回收转换成电能,并定期向密封恶劣环境中工作的微型机器人提供电能。本项目将探索研究能量回馈型超声波电机的构造理论与关键技术,并研制出至少一种能量回馈型超声波电机样机。研究内容包括:(1)能量回馈型超声波电机的工作机理与关键结构设计;(2)能量回馈型超声波电机的理论模型、设计方法;(3)超声波电机能量转换系统与储能系统耦合动力学行为;(4)能量回馈型超声波电机的驱动与控制特性;(5)能量回馈型超声波电机的制备科学与综合试验。本项目目标是研制集驱动与发电一体化的高效节能型超声波电机,为微型机器人在密封恶劣环境中的持续稳定工作

中文关键词: 超声波电机;振动能量采集;构造理论;关键技术;能量流图

英文摘要: The excellent performances of ultrasonic motors enable their wide applications in driving and controlling micro robots in recent years. However, due to the utilization of friction driving mechanism, the energy conversion efficiency is low, which greatly limit their applications in occasions such as sealed conditions where working micro robots only have limited energy supply.In order to provide a solution for such applications, the vibration energy-recycling technology is proposed to harvest and transfer vibration energy into electrical power, and to periodically supply to the micro robots involved.In this project,we will study the basic theories and the key technologies of the energy-recycling-type ultrasonic motor, followed by the prototype development of at least one type.The research contents include: (1) The operation mechanism and the key structure design; (2) The theorerical model and the design method; (3) The coupling dynamic behaviors between the energy harvesting system and the energy storing system; (4) The driving and the controlling performances; (5) The manufacturing sciences and the comprehensive tests. The objective of the project is to develop a highly efficient and energy-saving ultrasonic motor where the driving and the energy harvesting functions are integrated.

英文关键词: ultrasonic motor;vibration energy harvesting;design theories;key technologies;energy flow chart

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
33+阅读 · 2021年11月10日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
136+阅读 · 2021年2月17日
专知会员服务
106+阅读 · 2020年11月27日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
【学科发展报告】无人船
中国自动化学会
28+阅读 · 2019年1月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
15+阅读 · 2019年3月16日
Arxiv
30+阅读 · 2019年3月13日
小贴士
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
72+阅读 · 2022年2月9日
绿色制造标准化白皮书(2021版),48页pdf
专知会员服务
33+阅读 · 2021年11月10日
专知会员服务
47+阅读 · 2021年10月10日
专知会员服务
38+阅读 · 2021年5月9日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
136+阅读 · 2021年2月17日
专知会员服务
106+阅读 · 2020年11月27日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
【学科发展报告】无人船
中国自动化学会
28+阅读 · 2019年1月8日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员