项目名称: 基于壳交联胶束中的荧光共振能量转移构筑灵敏的比率型铅离子检测材料

项目编号: No.21204042

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 高分子科学

项目作者: 万学娟

作者单位: 清华大学

项目金额: 20万元

中文摘要: 近年来世界各地特别是发展中国家铅污染问题日益凸显,严重威胁着人类的身体健康。本项目针对现有有机荧光探针法检测铅离子的局限性(溶解/稳定性差、灵敏度有待提高、背景干扰等),拟利用聚合物壳交联胶束中的荧光共振能量转移(FRET)发展灵敏度更高的比率型铅离子检测体系,同时拓展荧光探针分子的环境适应性与功能性。本研究拟将FRET給体分子共价接入到胶束疏水内核中,并用FRET受体分子交联胶束壳层。铅离子能有效调控受体分子荧光发色团光学信号的开与关,影响給体分子与受体分子之间的荧光共振能量转移效率。通过监测荧光受体与給体分子的荧光发射强度之比,实现更为灵敏的比率型铅离子检测,并有效的消除背景干扰。另外,这种基于聚合物壳交联胶束的铅离子检测材料稳定性好,分散性能优,预计在较为复杂的检测条件下也能实现灵敏的定性定量检测,荧光示踪等。本项目的顺利实施可望在功能型荧光检测组装体的制备方法学研究方面提供参考。

中文关键词: 重金属离子;快速定性定量检测;荧光;环境敏感聚合物;有机无机杂化材料

英文摘要: Chemosensors of lead ions (Pb2+) have aroused considerable current interest in the past decade due to their ever-increasing toxicity to the environment and biological species. Considering the current limitations encountered for the well-published fluorescent and colorimetric chemosensors for Pb2+ based on organic probes (stability, dispersibility, sensitivity and background interference), the project focuses on the facile fabrication of more sensitive ratiometric detection materials for Pb2+ ion via fluorescence resonance energy transfer (FRET) process in the shell cross-linking micelles. The FRET donors was precisely located in the hydropobic core, and the shell of the micelles was cross-linked with FRET acceptors. It should be noted that the fluorescent emissions of the acceptors can be modulated with the concentration of Pb2+ ion, leading to the obvious changes in FRET efficiency. By monitoring the fluorescent emission ratios between the donors and acceptors, it is highly desirable that the obtained materials can achieve more sensitive detection of Pb2+ ion without interference of the background. Additionally, the shell cross-linking micelles offer excellent stability and dispersibility for the fluorescent probes of Pb2+ ion, which may provide a promising way for the applications in sensitive qualitative/quan

英文关键词: Heavy metal ion;Rapid qualitative and quantitative detection;Fluorescence;Stimuli-responsive polymer;Organic/inorganic hybrid materials

成为VIP会员查看完整内容
0

相关内容

深度对抗视觉生成综述
专知会员服务
32+阅读 · 2021年12月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年6月21日
德勤发布《2021年技术趋势》161页pdf(附下载)
专知会员服务
96+阅读 · 2021年4月16日
专知会员服务
25+阅读 · 2021年4月2日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【机器视觉】表面缺陷检测:机器视觉检测技术
产业智能官
25+阅读 · 2018年5月30日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年5月26日
小贴士
相关VIP内容
深度对抗视觉生成综述
专知会员服务
32+阅读 · 2021年12月29日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
24+阅读 · 2021年6月21日
德勤发布《2021年技术趋势》161页pdf(附下载)
专知会员服务
96+阅读 · 2021年4月16日
专知会员服务
25+阅读 · 2021年4月2日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
23+阅读 · 2020年2月23日
相关基金
微信扫码咨询专知VIP会员