项目名称: 基于设备衰退机制的单机预知性维护计划和车间生产调度协同模型研究
项目编号: No.71301176
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 管理科学
项目作者: 廖雯竹
作者单位: 重庆大学
项目金额: 20.5万元
中文摘要: 针对设备性能、维护及生产调度之间的必然关联和内在冲突,本项目综合运用统计学和预测理论、运筹学理论以及人工智能方法对单机设备预知性维护计划和车间生产调度的协同模型进行优化研究。主要研究内容为:(1)基于统计模式识别概念,整合设备多域检测参数,对设备的健康状况进行评估;(2)在此基础上,利用统计学和预测理论,预测设备剩余维护寿命,定性和定量地描述设备衰退趋势;(3)构建以设备操作为中心的集成问题概念模型,明确表征设备维护和生产调度之间的关联,利用运筹学理论,建立多目标优化的协同模型,对该集成问题进行理论解析;(4)针对问题复杂性,利用人工智能优化方法对协同模型进行求解,提高维护和调度结果的可行性和协调性;(5)通过实验仿真,分析评价运算结果和效率。通过本项目研究,有助于建立设备预知性维护计划和车间生产调度协同优化的建模、优化理论和方法体系,对拓展设备维护和生产调度理论及两者交叉发展有一定贡献。
中文关键词: 预知性维护;车间生产调度;协同;衰退系统;多目标优化
英文摘要: Based on the close relationship and conflict between machine performance, maintenance and production scheduling, this project researches a collaborative model of single-machine based predictive maintenance and production scheduling by considering statistics and forecasting theory, operation research theory and artifical intelligent optimization methods. The main contents are as follows:(1)based on the concept of statistical pattern recognition, machine domain detection parameters are integrated to evaluate machine's health status; (2)based on machine's health status, statistics and forecast theory are used to predict machine's remaining maintenance life, and machine's deteriorating process is qualitatively and quantitatively described; (3) construct the conceptual model of integration problem focusing on machine operation, and clearly describe the relationship between machine maintenance and production scheduling. By using operation research theory, a collaborative model of multi-objective optimization is established to theoretically analyze this integration problem; (4 ) considering the problem complexity, the artificial intelligence optimization method is used to solve the collaborative model for improving the feasibility and coordination of maintenance and scheduling results; ( 5 ) through experiments simulat
英文关键词: predictive maintenance;production scheduling;collaboration;deteriorating system;multi-objective optimization