项目名称: 微纳结构表面上润湿和电润湿动力学的跨尺度研究

项目编号: No.11202213

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 袁泉子

作者单位: 中国科学院力学研究所

项目金额: 28万元

中文摘要: 微纳结构表面通过固体表面的拓扑特性,从原子尺度、微观尺度到宏观尺度上影响和控制液体在固体表面的动态润湿和电润湿行为,改变固体表面的润湿性能。微纳结构表面上的润湿和电润湿动力学是一个典型的多场耦合、跨尺度的界面动力学问题,具有重要的学术研究意义,也是生物医药、能源电池、航空航天等应用领域内可控输运、提高效率的关键技术。本课题拟通过实验研究、数值模拟和理论建模相互结合、相互补充的研究方法,对微纳结构表面上的动态润湿和电润湿行为展开系统、深入、定量化的研究:在"力-电-热-化学"等多场耦合环境中,定量地探索微纳结构的拓扑特性、刚性/柔性结构、界面张力等性质对于润湿和电润湿动态过程的影响。期望通过本项目的开展,有助于进一步认识和理解液体在微纳结构表面润湿和电润湿的动力学规律,揭示微纳结构影响润湿特性的物理机制,优化表面微纳结构,预测和发现新的润湿现象,为应用领域发展新的技术提供理论依据和设计指导。

中文关键词: 微纳结构表面;动力学;润湿;电润湿;跨尺度

英文摘要: Owing to the surface topology, the micro/nano structured surfaces influence and control the dynamic behaviors of wetting and electrowetting, as well as the wettability of the solid surfaces from the atomic, microscopic to the macroscopic level. The dynamics of wetting and electrowetting on micro/nano structured surfaces is typically a multifield and multiscale interface dynamic problem, which is of great importance in theoretic research and is also the key technology to control the liquid transport in the application fields as biomedicine, energy, aerospace and etc. Employing a combined approach of multiscale experiments, numerical simulations and theoretic modeling, this project undertakes a systematic, in-depth and quantitative study focusing on the dynamic behaviors of wetting and electrowetting on micro/nano structured surfaces. In the "mechano-electro-thermal-chemical" multifield coupled environment, the effects of micro/nano structure, stiff and flexible structure, interface tension and etc. on the dynamics of wetting and electrowetting on the micro/nano structured surfaces would be quantitatively studied. This project targets to expand the knowledge about the dynamics of wetting and electrowetting on micro/nano structured surfaces, explore the mechanisms of influence of the micro/nano structure on the sur

英文关键词: micro/nano structured surface;dynamics;wetting;electrowetting;multiscale

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
专知会员服务
78+阅读 · 2020年8月4日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Risk-Averse Receding Horizon Motion Planning
Arxiv
1+阅读 · 2022年4月20日
Transformers in Medical Image Analysis: A Review
Arxiv
39+阅读 · 2022年2月24日
Arxiv
16+阅读 · 2020年5月20日
小贴士
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
104+阅读 · 2021年4月7日
【2021新书】流形几何结构,322页pdf
专知会员服务
52+阅读 · 2021年2月22日
专知会员服务
78+阅读 · 2020年8月4日
相关资讯
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员