项目名称: 基于微藻闪光效应的光生物反应器分区设计方法

项目编号: No.21306204

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 化学工业

项目作者: 薛升长

作者单位: 中国科学院过程工程研究所

项目金额: 25万元

中文摘要: 从满足单个藻细胞对光照最佳生理需求的角度设计光生物反应器可望获得最大光效率和微藻细胞产率,代表着未来光生物反应器的发展方向。现有的微藻闪光效应研究尚无法真正揭示微藻培养的生理最佳光照条件,相应的光生物反应器设计也存在微藻闪光效应利用不充分且流体驱动能耗大等问题。本项目拟改进现有微藻闪光效应研究平台使其可提供连续变动光照条件,最大程度上模拟藻细胞在光反应器中的真实光照历程;研究此光照条件下微藻的本征响应特征及等效光合响应的定量描述指标,建立光限制条件下微藻光合响应动力学模型;明确微藻培养的生理最佳光照条件,以完善光生物反应器设计的生物学基础。另外,利用逐层排布的光纤所自然形成的光强连续变化的光区和暗区,研究光纤反应器中光强分布、藻液流体力学特性和反应器性能之间的关系,建立可体现藻细胞真实光照历程和光合响应的光区、暗区划分理论,初步形成基于微藻闪光效应的光生物反应器的分区设计方法。

中文关键词: 微藻;闪光效应;动力学模型;光生物反应器;分区设计

英文摘要: Designing photobioreactor from meeting single microalgal cell's physiologically optimum light requirement is hopefully to obtain maximum light efficiency and cell productivity, thus representing the future development of phobioreactors. Existing research of microalgae's flashing light effects (FLE) is unable to truly elucidate the physiologically optimum light conditions for microalgae cultivation and the corresponding photobioreactor design based on that also has problems of insufficiency in fulfilling FLE of microalgae and high energy consumed for fluid driving. This proposal plans to modify our existing FLE research platform to provide continuously-changing light conditions so as to largely simulate the true lighting history of microalgal cells inside a reactor, investigate the intrinsic photosynthetic responses of microalgae to these light conditions and deduce their equivalent quantitative description indices, establish photosynthetic kinetic model of microalgae under light-limited conditions, identify the physiologically optimum light conditions for microalgae cultivation and perfect the biological basis for photobioreactor design. Furthermore, this proposal will also investigate the reactor performance as affected by light distribution and algal suspension fluid dynamics via the light-intensity-continuous

英文关键词: microalgae;flashing light effect;kinetic model;photobioreactor;partition-design

成为VIP会员查看完整内容
0

相关内容

基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
137+阅读 · 2021年11月21日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
21+阅读 · 2021年1月5日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
67+阅读 · 2020年3月5日
创业开启内卷时代,创业者的加速进化
36氪
0+阅读 · 2022年4月6日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
137+阅读 · 2021年11月21日
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
21+阅读 · 2021年1月5日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
生物数据挖掘中的深度学习,诺丁汉特伦特大学
专知会员服务
67+阅读 · 2020年3月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员