项目名称: 再生保温混凝土力学性能与保温性能影响因素及其机理研究
项目编号: No.51508370
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 建筑环境与结构工程学科
项目作者: 王文婧
作者单位: 太原理工大学
项目金额: 20万元
中文摘要: 项目针对我国建筑业高速发展带来的资源、能源以及环境问题,从建材的角度提出一种玻化微珠再生保温混凝土,项目采用微宏观相结合的手段,从再生混凝土材料的内部结构组成出发,研究组成物质宏观性质(再生骨料强度、替代率、类型、含水率,玻化微珠粒径、破碎率)对其力学性能的影响,探讨各因素与力学性能指标之间的关系;结合CT扫描技术等手段,在细观层次上建立再生保温混凝土强度模型及弹塑性损伤机理;结合扫描电镜、压汞仪、X-Ray衍射仪等手段,研究组成物质宏观性质(再生骨料强度、替代率、类型,玻化微珠粒径、破碎率,钢筋配筋率及放置位置,再生保温混凝土含水率)与微观内部结构之间的关系以及对再生保温混凝土保温性能的影响规律,建立再生保温混凝土的传热模型,揭示再生保温混凝土传热机理。在此研究基础上,进行性能优化试验,建立外掺料强化模型及再生保温混凝土优化理论,提出适用于再生保温混凝土的配合比设计方法。
中文关键词: 再生保温混凝土;力学性能;保温性能;配合比设计;机理
英文摘要: In recent years, high speed development of construction industry brings a series of resources and environment problems in China. This project focus on a kind of recycled aggregate thermal insulation concrete (RATIC) with glazed hollow bead. From macro and micro perspective, it studies the influence of different factors (including recycled strength, replacement ratio, type, size of glazed hollow bead, breakage ratio) to the mechanical property of RATIC and the relation between various factors and mechanical property indexes. Then the strength model and elastoplasticity damage mechanism of RATIC are established at micro-level by using CT scanning technique.The relationship between different factors (including recycled strength, replacement ratio, type, size of glazed hollow bead, breakage ratio, reinforcement ratio, placement, water content of RATIC) and the microstructural physical property and thermal insulation properties are established by using scanning electron microscope, mercury injection apparatus, X-Ray diffractometer. Then the heat transfer model of RATIC is established and heat transfer mechanism is analyzed. Based on the above study, experimental investigations are conducted on performance optimization by adding different admixtures. Then admixture hardening model and optimization theory of RATIC are established. A new mix design method is developed which is suitable for RATIC.
英文关键词: Recycled aggregate thermal insulation concrete;Mechanical properties;Thermal insulation properties;Mix proportion design;Mechanism