项目名称: 基于自适应支持向量机的微阵列分类与群体基因选择研究
项目编号: No.61203293
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 自动化学科
项目作者: 李钧涛
作者单位: 河南师范大学
项目金额: 24万元
中文摘要: 基于统计机器学习的微阵列分类是后基因时代的热门研究方向之一。本项目通过发展新型支持向量机模型和求解算法,以期解决该领域最近涌现出的群体基因选择、多正则化参数调整和多类分类等问题,为进一步开展大鼠肝再生基因表达数据分析提供具有原创性的理论成果。具体地,本项目主要开展以下几个方面的研究:1.构建适用于群体基因选择的自适应支持向量机;2.用数学语言刻画多类分类的群体基因选择效应,并给出合理的生物学解释;3.发展分段线性的多正则化参数解路算法,分析其计算的复杂性;4.进行微阵列分类实验,寻求影响大鼠肝再生的重要基因。
中文关键词: 支持向量机;基因选择;微阵列分类;大鼠肝再生;
英文摘要: Statistical-machine-learning-based microarray classification is one of the popular research fields in the post-genome era. New problems which are challenging the learning theory emerge as the study develops in depth, e.g., selecting genes in groups, selecting the multiple regularized parameters, performing multi-class classification. By developing the new support vector machines and the solving algorithms, this project is devoted to resolving these challenges and provides the original theory achievements for analyzing the gene expression data of the liver regeneration in rats. Specifically, the project focuses on the following problems: 1.Construct the adaptive support vector machines which can select genes in group; 2. Describe the grouping effect of multi-class gene selection in mathematical language and provide the reasonable biologic explanations; 3. Develop the piecewise linear solution path algorithms for multiple regularized parameters and analyze the corresponding computational complexity; 4. Perform experiments for microarray classification and seek the important genes which can influence the liver regeneration in rats.
英文关键词: support vector machine;gene selection;microarray classification;rat liver regeneration;