项目名称: 低应力、低热导氮化硅薄膜成膜机理及特性研究

项目编号: No.61307117

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 黎威志

作者单位: 电子科技大学

项目金额: 26万元

中文摘要: 氮化硅薄膜具有优良的光电性能和机械性能,在集成电路、微机械电子、太阳能电池以及显示器件领域都有着广泛的应用。通常的CVD工艺所获得的氮化硅薄膜应力较大,而采用高低混频PECVD工艺制备氮化硅薄膜可以较为方便地获得低应力氮化硅薄膜。本项目将系统深入地研究混频PECVD技术中工艺条件对氮化硅薄膜性能的影响规律;同时,为深入理解成膜机理,将模拟仿真反应腔体内部的气体分布,探索建立不同工艺条件下反应气体分布模型并探测等离子体的分布。 在单片集成非制冷红外探测器中,氮化硅薄膜分别作为结构支撑层、电学绝缘层以及敏感材料钝化层。这不仅要求薄膜具有较低的应力以减小桥面的形变,还要求薄膜具有足够低的热导和良好的绝缘性能。因此十分有必要对所制备氮化硅薄膜的特性,特别是热学参数,进行精确的测量和分析。为此,本项目将设计专门的热学测试微结构,以最终实现薄膜热学特性的精确测量。

中文关键词: 氮化硅;等离子增强化学气相沉积;热导;非制冷红外探测器;应力

英文摘要: Silicon nitride (SiNx) thin film is widely applied in the fields of integrated circuit, MEMS, solar cell and display devices due to its excellent optoelectronic and mechanic properties. SiNx deposited by normal chemical vapor deposition (CVD) technique usually has large stress, whilst through mixed frequency (MF) plasma enhanced CVD (PECVD) technique, it is convinient to obtain SiNx thin film very small stress. In this project, systematic study of the relation between process parameters and film properties will be performed, meanwhile, gas molecules distribution in the reactor chamber will be simulated and plasma species distribution will be inspected. It is believed that above work will be very helpful for understanding the deposition mechanism behind MF PECVD technique. Monolithic uncooled infrare focal panel array (UIFPA) device is one of typical applications of PECVD SiNx thin film, wherein the SiNx is employed as supported layer, insulator and sensitive film passivation, respectively. Consequently, it is inevitable to have an accurate knowledge about the properties, especially and thermal properties, of the deposited SiNx film. For this achievement, special micro-structures were elaborately designed and believed to have excellent measurement results

英文关键词: silicon nitride;plasma enhanced CVD;thermal conductivity;uncooled infrared detector;stress

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
33+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
专知会员服务
52+阅读 · 2020年12月28日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
33+阅读 · 2021年5月7日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
专知会员服务
52+阅读 · 2020年12月28日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
115+阅读 · 2020年9月11日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员