项目名称: 显微镜图像栈序列中植物细胞的鲁棒追踪算法研究

项目编号: No.61301254

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 刘敏

作者单位: 湖南大学

项目金额: 25万元

中文摘要: 植物顶端分生组织是植物器官中最重要的部分,植物学家通过共焦激光扫描显微镜来采集其细胞数据并存储为图像栈时间序列。开发鲁棒追踪四维(3D+时间)植物细胞及其分裂的算法对获取关于细胞行为模式的时空测量数据极其重要。由于植物细胞拥有相似的形状和灰度分布,且具有空间上紧密相连的特殊结构,在成像过程中又存在严重的噪声,图片还可能被错位、旋转或者放缩,这都给同时追踪所有细胞带来了巨大挑战。在本项目提出的追踪算法中,采用基于局部图匹配的方法来追踪细胞,每个细胞与其周围细胞组成的局部图的几何形状以及拓扑结构被用作匹配的基本特征。在此基础上,通过把局部图归一化去除位移、旋转以及放缩因子后再进行匹配,使本项目提出的追踪算法能成功对抗成像过程中带入的位移、旋转及放缩等噪声。而且,通过引入追踪算法的反馈来调节分割算法的参数而纠正局部分割错误。最后,通过二分图匹配算法实现四维追踪片段的重新连接,使追踪结果达到最优。

中文关键词: 细胞追踪;图像栈;局部图匹配;细胞分割;

英文摘要: The shoot apical meristems (SAMs) also referred to as the stem-cell niche, is the most important part of the plant body. The SAM cells are imaged by Confocal Laser Scanning Microscopy and stored in image stack time series. Developing a computational platform capable of robustly tracking SAM cells in the 4D image stacks is very critical to obtaining quantitative spatiotemporal measurements of a range of cell behaviors. The cells in the SAM are tightly clustered in space and have very similar shapes and intensity distributions, and there are much noise in the deeper layer image slices because of the absorbtion of laser energy , and the images can be translated, rotated and scaled in the imaging process, thus how to segment and track all cells in image stack time series can be very challenging. In our research, we propose a local graph matching based method to track the cells both spatially and temporally,and identify cell divisions at the same time. The geometric structure and topology of the cells' relative positions are efficiently exploited as the basic feature to match the cells. After that, the local graphs are normalized and the translation, rotation and scaling components are removed before the matching procedure, so our local graph matching based tracking algorithm could resist the noise of translation, r

英文关键词: Cell Tracking;Image Stack;Local Graph Matching;Cell Segmentation;

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
鲁棒和隐私保护的协同学习
专知会员服务
35+阅读 · 2021年12月22日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年5月12日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
77+阅读 · 2020年12月6日
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
小图像,大图景:AI彻底改变了显微镜技术
机器之心
0+阅读 · 2021年5月2日
基于深度学习的超分辨率图像技术一览
极市平台
17+阅读 · 2019年8月24日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
好文 | 基于深度学习的目标检测技术演进
七月在线实验室
12+阅读 · 2018年1月31日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
13+阅读 · 2021年5月25日
Arxiv
17+阅读 · 2021年3月29日
小贴士
相关VIP内容
CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
【CVPR2022】多机器人协同主动建图算法
专知会员服务
46+阅读 · 2022年4月3日
鲁棒和隐私保护的协同学习
专知会员服务
35+阅读 · 2021年12月22日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
33+阅读 · 2021年5月12日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
专知会员服务
77+阅读 · 2020年12月6日
相关资讯
综述:图像滤波常用算法实现及原理解析
极市平台
0+阅读 · 2022年1月29日
小图像,大图景:AI彻底改变了显微镜技术
机器之心
0+阅读 · 2021年5月2日
基于深度学习的超分辨率图像技术一览
极市平台
17+阅读 · 2019年8月24日
目标跟踪算法分类
算法与数据结构
20+阅读 · 2018年9月28日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
好文 | 基于深度学习的目标检测技术演进
七月在线实验室
12+阅读 · 2018年1月31日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员