项目名称: 基于渐进结构化学习的高维信息稀疏表示理论与技术

项目编号: No.61501294

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 戴文睿

作者单位: 上海交通大学

项目金额: 21万元

中文摘要: 本申请利用结构化的统计学习和基于测度空间的泛函优化,致力于优化学习的高维信号表示、分析和预测理论,并建立应用系统。具体旨在分析高维信号的多维空间拓扑结构,建立字典和采样信号间的最优映射,充分利用拓扑结构衍生的高维相关性,探索多维空间稀疏性和低秩性,实现基于结构化稀疏的信号优化表示。研究内容包括:利用参数化学习和随机采样优化效率、基于渐进学习构建字典、优化面向公共服务平台的可伸缩信号处理。技术路线涉及:以特征结构一致性作为约束推演信号预测的统计模型,并通过非线性映射推广到高维信号空间;运用概率图模型,利用耦合优化建立多层次约束网络下的统计模型,形成高效预测和稀疏表示理论;建立实际的分析和预测编码系统。本申请自实际应用需求中抽象出科学问题,预期的理论和技术成果有助于高维信号可伸缩处理和紧致表示技术的发展。

中文关键词: 多尺度信号分析;稀疏表示;非线性逼近;渐进字典学习;结构化概率模型

英文摘要: To meet with the rising demands on large-scale high-dimensional signal processing and transmission, we aim to propose the learning-based theory and algorithm optimized for high-dimensional signal representation, analysis and prediction by incorporating structured statistical learning and metric-based functional optimization. To be concrete, this proposal is to exploit the multi-dimensional topology of the input signal space to establish the optimal mapping between dictionary and sampled signals, so that the optimal signal representation based on structured sparsity can be achieved by exploiting the high-dimensional correlations derived by the multi-dimensional topology and investigating sparsity and low-rank property in original space. We also consider to construct the dictionary with progressive learning based on the multiscale analysis of featured structures and optimize it with parametric learning and stochastic sampling. Moreover, statistical predictive model is generalized to high-dimensional signals with nonlinear mapping under the constraints of structural coherence, in which graphical probabilistic models are leveraged to jointly optimize the predictive model over multi-layer relational network. In summary, we aim to propose the theory for sparse representation and high-performance prediction and develop practical analysis and coding techniques. Its theoretic achievements would benefit the ongoing research on compact representation and scalable processing of high-dimensional signals.

英文关键词: Multiscale signal analysis;sparse representation;nonlinear approximation;progressive dictionary learning;structured probabilistic model

成为VIP会员查看完整内容
0

相关内容

顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
个性化学习推荐研究综述
专知会员服务
58+阅读 · 2022年2月2日
【干货书】概率与信息,一种集成方法,291页pdf
专知会员服务
60+阅读 · 2021年9月1日
专知会员服务
48+阅读 · 2021年8月29日
【经典书】高维概率数据科学应用导论,301页pdf
专知会员服务
87+阅读 · 2021年6月17日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
14+阅读 · 2021年3月26日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
77+阅读 · 2020年12月6日
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
从模型到应用,一文读懂因子分解机
AI100
10+阅读 · 2019年9月6日
【仿真】基于大数据的机器学习与数值仿真技术
产业智能官
49+阅读 · 2019年9月3日
基于TensorFlow和Keras的图像识别
Python程序员
16+阅读 · 2019年6月24日
支持个性化学习的行为大数据可视化研究
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关VIP内容
顾及时空特征的地理知识图谱构建方法
专知会员服务
53+阅读 · 2022年2月15日
个性化学习推荐研究综述
专知会员服务
58+阅读 · 2022年2月2日
【干货书】概率与信息,一种集成方法,291页pdf
专知会员服务
60+阅读 · 2021年9月1日
专知会员服务
48+阅读 · 2021年8月29日
【经典书】高维概率数据科学应用导论,301页pdf
专知会员服务
87+阅读 · 2021年6月17日
专知会员服务
28+阅读 · 2021年6月4日
专知会员服务
14+阅读 · 2021年3月26日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
25+阅读 · 2020年12月17日
专知会员服务
77+阅读 · 2020年12月6日
相关资讯
论文浅尝 | 基于正交普鲁克分析的高效知识图嵌入学习
基于虚拟现实环境的深度学习模型构建
MOOC
24+阅读 · 2019年9月28日
从模型到应用,一文读懂因子分解机
AI100
10+阅读 · 2019年9月6日
【仿真】基于大数据的机器学习与数值仿真技术
产业智能官
49+阅读 · 2019年9月3日
基于TensorFlow和Keras的图像识别
Python程序员
16+阅读 · 2019年6月24日
支持个性化学习的行为大数据可视化研究
综述 | 近5年基于深度学习的目标检测算法
计算机视觉life
38+阅读 · 2019年4月18日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
7+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员