项目名称: 基于噻吩并[3,4-c]吡咯[4,6]二酮的全受体共轭聚合物的合成及性能研究

项目编号: No.21204017

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 高分子科学

项目作者: 张国兵

作者单位: 合肥工业大学

项目金额: 25万元

中文摘要: 噻吩并[3,4-c]吡咯[4,6]二酮(TPD)单元结构简单,对称且共平面,同时TPD含有的强吸电子内酰亚胺基团有利于获得低的LUMO和HOMO能级,是作为合成可溶液加工、高性能、环境稳定的n-型聚合物的理想单元。本申请合成含TPD单元的全受体(A-A)结构的共轭聚合物,不同于通常合成共轭聚合物采用的给体-受体(D-A)结构,A-A结构的聚合物全部由吸电子单元组成,一方面,聚合物可以代替PCBM作为电子传输材料制成全聚合物太阳能电池器件,增加光吸收,调节全受体共轭聚合物的LUMO-HOMO能级,与空穴传输材料能级匹配,优化性能;另一方面,也可作为n-型材料应用于有机薄膜晶体管器件中,含TPD单元聚合物具有的低LUMO能级有利于器件的环境稳定,有望得到环境稳定的新型n-型薄膜晶体管材料。

中文关键词: 共轭聚合物;全受体;强缺电子单元;电子和双极性传输;

英文摘要: The thieno[3,4-c]pyrrole-4,6-dione(TPD)unit possesses relative simple compact,symmetric, and planar structure, the strong electron-withdrawing imide group lead to low HOMO and LUMO energy levels, these indicate that the TPD unit is an excellent building block for solution-processable, high performance, air stable n-type polymers. In this application, we synthesize and characterize the all acceptor polymers based the TPD unit, the polymers are synthesized through Stille coupling reaction of TPD-distannyl with electron-deficient dibromide monomer. The all acceptor polymers can gain the absorption in visible region when used as an electron-acceptor in all polymer solar cells in bulk heterojunctions. The LUMO-HOMO energy levels of all acceptor polymers can be tuned to fulfill requirements with respect to the p-type polymer in the active layer.On the other hand, low-lying LUMO level are essential to resist oxidation and thus increase the organic thin-film transistor devices stability, the TPD-based polymers would be the stable n-type material which used in organic thin-film transistors.

英文关键词: Conjugated polymers;all-acceptors;highly electron-deficient unit;electron and ambipolar transport;

成为VIP会员查看完整内容
0

相关内容

【ICML2022】药物结合结构预测的几何深度学习
专知会员服务
25+阅读 · 2022年5月24日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
21+阅读 · 2021年12月4日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
专知会员服务
31+阅读 · 2021年6月24日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
【ICML2021】具有线性复杂度的Transformer的相对位置编码
专知会员服务
24+阅读 · 2021年5月20日
使用深度学习,通过一个片段修饰进行分子优化
AI从底物和酶的结构中预测米氏常数,量化酶活性
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年5月31日
Arxiv
0+阅读 · 2022年5月31日
Arxiv
0+阅读 · 2022年5月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Position-aware Graph Neural Networks
Arxiv
15+阅读 · 2019年6月11日
小贴士
相关主题
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员