项目名称: 石墨烯调控硅基光子晶体及器件

项目编号: No.11204365

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 甘霖

作者单位: 中国科学院物理研究所

项目金额: 30万元

中文摘要: 硅基光子晶体可以在微纳尺度上操控光子,形成具有一定功能的集成光学器件。石墨烯具有优异的电学、光学和力学性能,它能够与硅基器件形成互补或集成在一起,使其有望在高性能纳米器件尤其是新型信息器件中有着广泛和重要的应用前景。本项目将在理论和实验两方面开展石墨烯调控的光子晶体及器件的研究。理论方面,我们将建立石墨烯光学性质模型,在以前硅基光子晶体工作的基础上,利用本课题组发展的时域有限差分,多重散射等方法模拟研究石墨烯与光子晶体集成在一起时产生的新现象新功能。实验方面,我们将利用微加工工艺制作高质量的硅基光子晶体结构,探索石墨烯转移方法,将光子晶体与石墨烯集成在一起,利用微区光谱测量系统,研究外加电压对光子晶体的调控功能,并结合理论分析,对所得到的现象进行论证。通过对该项目的研究,将丰富我们对光与复杂结构的相互作用的新现象和新调控手段的认识,促进发展新一代纳米光子器件技术。

中文关键词: 石墨烯;光子晶体;表面等离子体;;

英文摘要: Photonic crystal has offered a powerful means to mold the flow of light at subwavelength scale, and it has been used in integrated photonic devices. Graphene is an allotrope of carbon. Its structure is one-atom-thick planar sheets of bonded carbon atoms that are densely packed in a honeycomb crystal lattice. Graphene has unique electronic, optical, and mechanical properties. It can be easily integrated with silicon devices and has many potential and important applications in nano-devices. In this project, we will theoretically and experimentally investigate the graphene-based photonic crystals and devices. On the theoretical side, we will build the simulation model of graphene optical properties and develop the finite-difference time-domain and multiple scattering methods. Base on the previous work on silicon photonic crystals, we will study the new phenomena and new functions in graphene-based photonic crystals devices. On the experimental side, we will fabricate high quality silicon photonic crystal structures and investigate the transfer method of graphene. The graphene-based photonic crystals will be studied by the micro-region spectrum measurement system. Combining with the simulation results, the performance of our structure will be discussed. The implementation of this project will enhance our understandi

英文关键词: Graphene;Photonic crystal;Surface plasmon;;

成为VIP会员查看完整内容
0

相关内容

中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
42+阅读 · 2021年9月7日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
51+阅读 · 2020年12月28日
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员