项目名称: 利用遥感物候信息改进区域作物生长模拟的研究
项目编号: No.41271429
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 天文学、地球科学
项目作者: 范锦龙
作者单位: 国家卫星气象中心
项目金额: 75万元
中文摘要: 以数据同化技术把作物光谱信息融入作物模型机理过程是当前改进区域作物生长模拟方法的重要研究方向。项目拟以华北冬小麦主产区为研究区域,采用实验法、数据同化法和时间序列重构法,引入遥感物候信息,改进通常只同化遥感叶面积指数进入作物模型的方法,提高区域作物生长模拟的精度。项目通过布设地面实验,获取标定作物模型所需的参数,并用于检验和验证作物模型。通过在研究区快速调查,获取大范围观测数据来校准遥感数据产品和作物模型的中间参数。利用精准处理后的时间序列遥感数据,构建遥感物候模型,提取关键作物物候信息。以全生育期物候匹配的思路,根据遥感物候信息决定作物模型模拟作物生长的时间,并动态使用对应时间的气象数据,提出并实现同化两类遥感信息进入作物模型的技术方法。项目以物候匹配的思路,将遥感获取的物候信息和叶面积指数同化进入作物模型,在技术方法上有进步和创新,具有重要的科学意义,还可为作物产量预测、品质预报借鉴。
中文关键词: 作物模型;农业遥感;物候;叶面积指数反演;作物分类
英文摘要: G20 has noticed the progress of GEO's Global Agricultural Monitoring System of Systems and made a declaration at the G20 agriculture minister conference in Paris, France in June,2011.The declaration says "In order to improve crop production projections and weather forecasting, with the use of modern tools, in particular remote sensing tools, we decide to launch the Global Agricultural Geo-Monitoring Initiative, via the Group on Earth Observations, a useful input for FAO's Agricultural Market Information System concerning the provision of more accurate crop forecasts data." Therefore, how to provide more accurate crop forecast data for the global food security is challenging.The Chinese community of agriculture remote sensing is rising in this field and should play more important role in response to this initiative. The remote sensing data assimilation technology has been used to introduce remote sensing data into crop model. A bunch of satellite products retrieved from low resolution remotely sensed data has been generated and made freely available.NDVI,LAI and phenology are relevant to the crop growth.In particular, LAI and phenology are two key parametesrs in crop model. LAI influences the photosynthesis of the crop leaves and stems.Phenology may decide the crop stages.So, LAI and phenology may be used to link
英文关键词: Crop Model;Agricultural Remote Sensing;Phenology;LAI Retrieval;Crop Classification