项目名称: 基于概率密度演化的复杂工程结构抗震整体可靠度研究
项目编号: No.51278282
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 建筑科学
项目作者: 刘章军
作者单位: 三峡大学
项目金额: 80万元
中文摘要: 为了实现复杂工程结构的全寿命性能设计与控制,结构外部作用的随机性与结构性态的非线性及随机性耦合是两个不可回避的基本问题,随机动力系统研究的主要目的,即在于解决非线性随机系统在随机动力作用下的分析、设计与控制问题。本研究亦集中于这一问题。首先,从Karhunen-Loeve分解理论出发,在随机过程的二重正交展开基础上,采用同源随机性的思想,研究地震等随机动力激励的三重正交展开模型,达到用一个基本随机变量即可在二阶数值特征意义上精确反映外部激励源的随机性。其次,采用具有13个参数的广义Bouc-Wen模型来描述结构性态的滞回特性,通过理论分析、结构模型试验与数值模拟,研究模型参数的确定性取值或概率分布,构建具有非线性与随机性耦合的恢复力模型。最后,结合最新发展的概率密度演化理论,研究复杂工程结构的非线性随机地震反应与抗震整体可靠度,进而实现基于整体可靠度的结构抗震性能优化设计与控制目的。
中文关键词: 地震工程;概率模型;复杂工程结构;抗震可靠度;概率密度演化方法
英文摘要: In order to realize the performance design and control of complex engineering structures, the randomness of external excitations and structural properties, and the nonlinearity of structural behaviors are two unavoidable basic problems. The main purpose of the research on stochastic dynamics is to solve the analysis, design and control of nonlinear stochastic systems subjected to random dynamic excitations. The research of this project is focused on the above issues. Basically, the Karhunen-Loeve(K-L)decomposition provides a second-moment characterization of random processes in terms of deterministic orthogonal functions and uncorrelated random variables. The efficiency of the K-L decomposition hinges crucially on the availability of accurate eigenvalues and eigenfunctions of the covariance function. The double orthogonal expansion method overcomes the shortcomings of the K-L decomposition. However, the above two methods need a large number of uncorrelated random variables to describe a random process in engineering. Using the idea of the homology random, an innovative triple orthogonal expansion model of random dynamic excitations, such as earthquake, strong wind and wave, can be obtained. The method of triple orthogonal expansion using a basic random variable can accurately simulate the random process from the
英文关键词: Earthquake engineering;Probabilistic model;Complex engineering structures;Seismic reliability;Probability density evolution method