项目名称: 大气压强电场电离放电飞行器流动控制研究

项目编号: No.60801010

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 无线电电子学、电信技术

项目作者: 杨波

作者单位: 大连海事大学

项目金额: 22万元

中文摘要: 等离子体流动控制是一种新兴的飞行器流动控制技术,具有节能、响应时间短、无需移动部件等优势。在我国进行等离子体流动控制研究,对于节能和提高我国航空工业实力及军事现代化水平具有重大和深远的战略意义。目前等离子体流动控制通常采用表面放电方式,电场强度低,属于弱电离放电,仍没有突破"离子风"技术,诱导的气流速度仅为8m/s,不具有实用价值。项目组结合前期参加的国家自然科学基金重点项目,利用大气压强电场电离放电方法,成功研制了小型、高浓度、低能耗等离子体激励器,其输出离子浓度高出弱电离放电3个数量级,为本项目提供了实施技术。在此基础上:(1)研究等离子体与气体分子相互作用机制;(2)研究等离子体流动控制机理;(3)研究等离子体浓度、等离子体激励器外形尺寸、放置位置等特征参数对翼型边界层速度场的影响规律;优化特征参数,将等离子体诱导的气流速度提高到100m/s,为等离子体流动控制提供切实可行的新方法。

中文关键词: 强电场电离放电;等离子体;流动控制;减阻

英文摘要: Plasma actuation is a kind of new technology for aircraft flow control with advantages of low energy consumption, short response time and no moving parts. In our country, to conduct the research on the control of plasma flow has profound significance on saving energy and improving the national aviation industry and the military modernization. At present, the discharge plasmas used for flow control are usually surface discharge, which belongs to weakly ionized discharge for the low electric field. The surface discharge can not break through the technology of "ion wind", and the maximum induced gas flow velocity is only 8m/s, which is not viable in practical applications. In the previous key project of National Natural Sciences Foundation we took part in, a plasma actuator with small size, high concentration and low energy consumption was successfully developed with strong electric field ionization discharge at atmospheric pressure. The output ion concentration of this plasma actuator is 3 magnitudes higher than that of the weakly ionized discharge, which provides the basis for this project. Based upon the previous work, the following aspects are supposed to be studied: (1) the mechanism of interaction between plasma and gas molecules, (2) the mechanism of plasma flow control, (3) the influence of plasma concentration, dimension of plasma actuator and the location of plasma actuator on the velocity field of boundary. And then all the parameters are optimized to increase the induced gas flow velocity to 100 m/s with a goal of providing a viable technology for plasma flow control.

英文关键词: strong eletric field ionization discharge; plasma; flow control; drag reduction

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
88+阅读 · 2022年4月14日
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
12+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年6月26日
专知会员服务
39+阅读 · 2021年5月12日
电子科大最新《深度半监督学习》综述论文,24页pdf
专知会员服务
87+阅读 · 2021年3月6日
最新《深度半监督学习》综述论文,43页pdf
专知会员服务
152+阅读 · 2020年6月12日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
58+阅读 · 2021年11月15日
Arxiv
102+阅读 · 2021年6月8日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员