项目名称: 石墨烯/聚合物柔性电子器件微纳界面的可控构筑及应变增强研究

项目编号: No.61504148

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 杨俊

作者单位: 中国科学院重庆绿色智能技术研究院

项目金额: 18万元

中文摘要: 提高柔性电子器件的界面力学性能,增强在大应变场下的耐受性和稳定性,是目前柔性电子技术发展的关键。基于石墨烯的优越力学与电学性能,本项目提出一种在微纳结构上直接生长石墨烯及无损转移石墨烯的方法,实现石墨烯/聚合物微纳界面的可控构筑,以解决石墨烯/聚合物柔性电子器件在应变场下出现薄膜裂纹、界面脱落等力学失效问题。基于分子动力学理论建立石墨烯/聚合物复合界面的物理模型,揭示其界面力学行为和功能失效机制;研究界面可控微纳结构对石墨烯/聚合物界面应变性能的增强机理;并探索构筑石墨烯/聚合物可控微纳界面的工艺实现方法。本项目所研究的石墨烯/聚合物微纳界面的可控构筑,为克服现有柔性电子器件在应变场下出现力学、电学失效提供新的思路,为发展下一代大应变高耐受性、高稳定性柔性电子器件奠定基础。

中文关键词: 柔性电子;石墨烯;应变增强;微纳界面

英文摘要: Improving the interfacial mechanical performance of flexible electronic device and enhancing its tolerance and stability under large strain are very crucial for its development. Based on graphene’s excellent mechanical and electrical properties, we propose a method by which graphene directly grows on the micro-nano structure and is transferred through a non-destructive technic. We utilize this method to construct a controllable graphene/polymer micro-nano interface, solving the film crack and interface exfoliation problems that confront graphene/polymer based flexible electronic device. We reveal the mechanical behavior and failure mechanism of the graphene/polymer interface by establishing its physical model based on molecular dynamics, and research the enhancing principle of controllable micro-nano structure. Also, the graphene/polymer controllable micro-nano interface fabrication technic will be explored. The successful implementation of this project will provide a new route to overcome the issue of mechanical and electronic function failure and pave the way to the next generation highly endurable and stable flexible electronic devices.

英文关键词: Flexible Electronics;Graphene;strain tolerance enhancement;micro-nano interface

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
2021年中国量子计算应用市场研究报告
专知会员服务
38+阅读 · 2021年10月28日
专知会员服务
170+阅读 · 2021年8月3日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
32+阅读 · 2020年11月8日
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
41+阅读 · 2022年4月4日
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
14+阅读 · 2022年3月23日
2021年中国量子计算应用市场研究报告
专知会员服务
38+阅读 · 2021年10月28日
专知会员服务
170+阅读 · 2021年8月3日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
52+阅读 · 2020年12月28日
【2020新书】操作反模式: DevOps解决方案, 322页pdf
专知会员服务
32+阅读 · 2020年11月8日
相关资讯
年前你想攒钱买什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员