项目名称: 声控CPPs介导叶酸靶向载10-HCPT相变纳米粒研制及超声分子成像、治疗与监控研究
项目编号: No.61471074
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 无线电电子学、电信技术
项目作者: 周志益
作者单位: 重庆医科大学
项目金额: 78万元
中文摘要: 针对肿瘤超声分子成像与靶向治疗的核心问题-缺乏全面靶向肿瘤细胞超声分子探针,课题组结合前期研究基础,设想构建细胞穿膜肽(Cell Penetrating Peptides, CPPs)介导靶向载十羟基喜树碱(10-HCPT)相变纳米粒,利用CPPs可以穿过细胞膜及细胞外基质屏障优点,实现介导纳米粒靶向每一个肿瘤细胞里里外外,并通过相变技术使纳米粒相变成含气微泡,联合实验室开发的低功率超声分子显像与治疗系统和 DFY型超声图像定量分析诊断仪,进行靶病变超声分子成像及定量分析,为超声分子成像质量实现质的提高奠定基础,同时验证设想10-HCPT与细胞内微泡破裂产生的爆炸效应有协同增效作用,进而提高靶向抗肿瘤治疗水平。预期成功制备的 CPPs介导靶向载10-HCPT相变纳米粒,实现高质量超声分子成像及安全高效药物投递,有望为肿瘤超声分子成像、治疗与监控提供一种新思路和新方法。
中文关键词: 靶向;细胞穿膜肽;相变纳米粒;超声分子成像;治疗
英文摘要: To solve the key problem of ultrasound molecular imaging and therapy for tumor- lack of comprehensivetumor cell targeting ultrasound molecular probe, we plan to construct cell penetrating peptides (CPPs )-mediated folic acid targeting phase-shift perfluorocarbon nanoparticles containing 10-HCPT based on previous research. The nanoparticles will be mediated targeted each tumor cell inside and outside by CPPs because of its penetrating barriers of cell membranes and extracellular matrix. The nanoparticles will be changed into microbubbles using phase-shift technology, and ultrasound molecular imaging and quantitative image analysis for target lesion will be taken using low- power ultrasound molecular imaging and therapy systems and DFY diagnostic ultrasound for quantitative image analysis developed by our laboratory, which will lay the foundation of prominent improvement of ultrasound molecular imaging and therapy for tumor. Meanwhile, we will verify synergistic anti-tumor effects of 10-HCPT and explosion effect of microbubbles ruptured within the cell, which will increase target anti-tumor therapy level. CPPs-mediated targeting folic acid phase-shift perfluorocarbon nanoparticles containing 10-HCPT can realize high-quality ultrasound molecular imaging and safe and efficient drug delivery, which will provide a new idea and new methods for the development of ultrasound molecular imaging,therapy and monitor of tumor.
英文关键词: Targeted;CPPs;Phase-shift nanoparticle;Ultrasound molecular imaging;Therapy