项目名称: 量子信息中纠缠判定及纠缠度问题的研究
项目编号: No.11201427
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 陈芝花
作者单位: 浙江工业大学
项目金额: 22万元
中文摘要: 量子信息是物理学、数学、信息等学科交叉融合产生的的新兴学科,有着重大的科学意义和广阔的实际应用前景。量子纠缠在量子信息中居于中心地位,纠缠判定以及纠缠度的计算则是量子纠缠中的一个关键内容。纠缠度的计算是一个非线性半定规划问题,但由于量子纠缠的特殊张量空间结构,常规的算法不再有效。本项目将研究如何使用优化算法以及算子理论来计算纠缠度及判定纠缠:利用算子理论、特别是算子空间理论,结合半定规划等优化算法、信息论等相关知识,获得适用于张量积量子态空间特殊结构的纠缠度的算法,得到精确度更高的解析下界或者近似估计。本课题的研究成果,一方面可以用来计算纠缠度,判定纠缠,获得物理上的各种应用;同时,通过实际物理问题的驱动,提出并解决新的数学问题,促进我们对相关数学问题如半定规划、算子理论的认识,发展算子理论及优化算法的数学理论。
中文关键词: 纠缠判定;纠缠度;算子理论;优化算法;
英文摘要: Quantum information is the interdiscipline of physics,mathematics, and information science, it has great scientific significance and a wide variety of practical applicaions;quantum entanglement lies in the heart of quantum information, entanglement detection and entanglemt measure is the key of quantum entanglement, entanglement measure is an nonlinear semi-definite programming problem. Because of the special tensor product structure of entanglemnt, usual optimization algorithms do not work. The aim of this project is to study how to use optimization algorithms and perator theory to calculate entanglement measure:semi-definite programming,operator theories,especially operator space theory and information theory will be used,and then the algorithms fit for calculation of entanglement measure and highly exact lower bound or approximate results of entanglement measure can be obtained.Firstly,the results of this project can be used to compute entanglement measure , get some entanglement crition and practical application in physics;secondly,driven by physical problems,new mathematical problem is put forward and will be worked out.Our understanding about relative mathematical problems such as semi-definite programming and oprator theory will be increased and new mathematical theories will be developed.
英文关键词: Entanglement detection;Entanglement Measure;Operator theory;Optimization method;