项目名称: 基于外电场操控的超冷极性分子偶极-偶极相互作用研究

项目编号: No.11304189

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 姬中华

作者单位: 山西大学

项目金额: 30万元

中文摘要: 超冷极性分子具有永久电偶极矩,其独特的长程偶极-偶极相互作用使其在精密测量、量子信息、新奇量子简并气体、多体物理和超冷化学等物理学前沿领域具有非常广阔的应用前景。本项目旨在对外电场操控的超冷极性分子的偶极-偶极相互作用这一前沿热点问题进行研究。研究内容包括:为了增强电场对分子的操控强度、延长对分子的操控时间,研究采用磁缔合共振增强技术制备和操控超冷极性分子,获得高密度长寿命振转能级可控的纯基态超冷铷铯分子;通过电场调控超冷极性分子空间取向,研究电场作用下超冷极性分子的长程各向异性的偶极-偶极相互作用势能,散射特性和超冷分子碰撞;通过控制电场强度改变分子作用的散射长度,调节弹性碰撞与非弹性碰撞散射比率,研究偶极-偶极相互作用在分子量子简并气体中的应用。上述研究内容的实现可以阐明外电场与超冷极性分子的相互作用机制,为利用超冷极性分子实现量子计算和分子量子简并气体提供理论基础和技术支持。

中文关键词: 超冷极性分子;偶极-偶极相互作用;电场操控;超冷碰撞;量子态

英文摘要: Ultracold polar molecules have permanent electric dipole moment. The special dipole-dipole interaction enables them to have extensively applications in many frontiers in physics, such as precision measurement, quantum information, novel quantum degenerate gas, many-body physics, ultracold chemistry and so on. We will investigate the dipole-dipole interaction of ultracold polar molecules with external electric field manipulation in this project,which is also an important frontier. The contents in this project are listed below. In order to enhance electric field manipulation on molecules and extend themanipulation time on the molecules, we will use resonance-enhanced magneto-association to produce and manipulate ultracold polar molecules, and get high density, long lifetime, and selectable rovibrational level ultarcold RbCs molecules in absolute ground state. Using electric field to manipulate the space orientation of ultracold polar molecules, we will study the long range, spatially anisotropic dipole-dipoleinteraction potential of ultracold polar molecules under electric field, investigate the scattering characteristic and ultracold collision. By controlling the elctric intensity to change the molecular interaction scattering lengthand adjusting the ratio of elatic collision to inelastic coll

英文关键词: ultracold polar molecules;dipole-dipole interaction;electrical manipulation;ultracold collision;quantum state

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
专知会员服务
43+阅读 · 2021年2月8日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
59+阅读 · 2021年1月6日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
14+阅读 · 2019年9月11日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员