项目名称: 单晶及孪晶铁纳米粒子的固-固相变与固-液相变研究

项目编号: No.11474234

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 文玉华

作者单位: 厦门大学

项目金额: 90万元

中文摘要: 铁纳米粒子因其超顺磁性、高反应性和低廉的价格而在信息存储、能源化工和生物医学等领域中具有广泛应用前景。与其他金属纳米粒子相比,铁纳米粒子具有更为丰富的晶体结构,而且这些不同的结构在一定的条件下可以相互转变,因而展现出丰富的物理与化学性质。然而,由于相变的动力学过程实验难以捕获,有关铁纳米粒子的相变行为和机制目前仍不清楚。本项目拟采用分子动力学方法与第一性原理计算并结合实验表征,对多面体单晶和孪晶铁纳米粒子在升温过程中的固-固相变和固-液相变展开系统的研究,以获得对相变行为与机制的深入理解;在此基础上,通过研究液态铁纳米粒子在冷却过程中的凝固行为,进一步探讨单晶和孪晶铁纳米粒子形成的原因,重点分析铁纳米粒子中新相的成核和生长机制;期望通过以上互逆过程中的相变动力学对比研究,从原子和电子层次上揭示铁纳米粒子的晶体结构与相变机制的内在关联,为铁纳米粒子的设计、合成和应用提供科学依据和指导。

中文关键词: 纳米粒子;结构相变;相变动力学;晶体结构;分子动力学

英文摘要: Iron nanoparticles have exhibited extensive applications in fields of information storages, energy resources and chemical industry, and biomedicines due to their superparamagnetism, high reactivity, and low cost. Compared with other metallic nanoparticles, iron ones possess abundant crystal structures which may be transformed among each other under certain conditions, and therefore display rich physical and chemical properties. To date, however, the phase transition mechanism of iron nanoparticles remains unclear because the dynamics process of phase transition is considerably difficult to be captured in experiments. In this project, in order to gain an in-depth understanding of phase transition behavior and mechanism, atomistic simulations and experimental characterizations will be employed to systematically study the solid-solid and solid-liquid phase transformations of polyhedral single-crystalline and twinned iron nanoparticles. Subsequently, the mechanism in the formation of single-crystalline and twinned iron nanoparticles will be elucidated by investigation on the solidification of liquid iron nanoparticles during cooling process. Especially, nucleation and growth of new phase in iron nanoparticles will be examined. By comparison of phase transition dynamics in the inverse processes, this project aims to discover the intrinsic relations between the crystal structures and phase transition mechanism of iron nanoparticles, thus provides a basis for their future design, synthesis, and practical applications.

英文关键词: Nanoparticle;Structural Transformation;Phase Transition Dynamics;Crystal Structure;Molecular Dynamics

成为VIP会员查看完整内容
0

相关内容

【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】计算理论导论,482页pdf
专知会员服务
84+阅读 · 2021年4月10日
专知会员服务
109+阅读 · 2021年4月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
CCCF卷首语 | 忒修斯之船和钱塘江边的鲁提辖
中国计算机学会
0+阅读 · 2022年4月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【Chen Guanyi博士论文】汉语名词短语的计算生成,282页pdf
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】计算理论导论,482页pdf
专知会员服务
84+阅读 · 2021年4月10日
专知会员服务
109+阅读 · 2021年4月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
30+阅读 · 2020年12月14日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
CCCF卷首语 | 忒修斯之船和钱塘江边的鲁提辖
中国计算机学会
0+阅读 · 2022年4月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员