项目名称: 页岩气水平井气水两相生产测井模拟实验研究
项目编号: No.41474115
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 天文学、地球科学
项目作者: 郭海敏
作者单位: 长江大学
项目金额: 80万元
中文摘要: 本项目以多相流体力学理论为依据,以多相流动环路模拟试验平台为手段,进行低产、低压气液两相生产井生产动态监测方法和测井资料解释应用基础研究。该方法是通过改变地面多相流动环路模拟试验装置的工作环境,测定不同测量模式的测井仪器在不同流动状态下的响应信息,综合分析实验配给流动参数和多相流体力学理论模型,形成页岩气水平井生产动态监测准确有效的测井方法和测井资料解释评价技术。该方法具有现场测试仪器的响应信息与实验配给数据的动态刻度特点,能较好地解决测井资料解释模型与测井数据不匹配问题,从而提高生产动态监测测井资料解释精度与准确性。在方法应用研究方面,针对页岩气生产井低产、低压、水平井压裂、筛管完井等生产特征,研究该生产条件下生产测井成套仪器在连续测量和集流测量模式测井仪器的响应特征,提出页岩气水平井生产动态监测测井方法和资料解释评价技术,为页岩气井生产动态监测和压裂增产效果检查提供新的有效的技术手段。
中文关键词: 页岩气;水平井;生产动态测井;气液两相流;提高采收率
英文摘要: Based on the multiphase fluid mechanics theory and the horizontal three phase flow loop, The dynamic monitoring methods for low production and low pressure gas-liquid two phase well will have been studied in this project. The method is a kind of Physical simulation experiment method in which the individual phases of gas and water are pumped from their individual tanks into 126mm ID plexiglass pipeline. The water and gas flow rates and water holdup are measured by production logging tools. According to a comprehensive analysis of the experiment data and fluid mechanics model, the shale gas horizontal well production logging method and data interpretation will have studied in the project.The method has the advantages of dynamic calibration between measuring signal of production logging tools with experimental data, with which the mismatch will be solved effectively between production logging interpretation model and logging data, thus the interpretation accuracy and veracity will be enhanced. In the application study area, the characteristics study of production logging tools responded from working condition which features low production, low pressure, horizontal well fractured and screen completion will lead to find a logging method and interpretation for shale gas horizontal production well, which is a new effective tool in the shale gas horizontal production well monitoring and evaluation of fracture effects.
英文关键词: shale gas;horizontal well;production logging;gas-liquid two-phase flow;enhancing recovery