项目名称: 磁弹性问题的各向异性有限元误差估计

项目编号: No.11501524

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 杨永琴

作者单位: 郑州大学

项目金额: 18万元

中文摘要: 磁弹性问题是研究弹性固态物质中电磁场和变形场相互作用的的耦合问题。磁弹性理论是在线性弹性理论和线性电动力学理论的基础上发展起来的,对于处在高温、高压和强电磁场作用下的结构元件的强度、可靠性分析具有非常重要的意义。实际工程问题中涉及到复杂的磁弹性场的耦合,在数学上归结为耦合的偏微分方程组,难以进行解析求解,有必要研究此类问题的数值解法。目前关于磁弹性问题的有限元方法研究大多是仅给出了有限元算法和数值模拟结果,没有对该耦合问题的有限元方法进行系统深入的研究;并且实际问题中磁弹性问题很多具有各向异性,而已有的有限元研究多是在单元满足正则性条件下给出的,这不利于反映问题真解的性态。本项目旨在研究电磁弹性问题的有限元方法,致力于研究各向异性网格下的高效有限元算法,给出磁弹性问题各向异性有限元误差估计结果,以更好地为实际工程中磁弹性问题的计算提供理论和算法支持。

中文关键词: 磁弹性;各向异性;有限元;误差估计

英文摘要: Magnetoelasticity is a coupled problem of magnet field and deformation field in elastic solid. The theoretical and numerical researches on magnetoelasticity is very important for the reliability analysis of structural element in the high temperature, high pressure and strong electromagnetic field. The magnetoelasticity is attributed to partial differential equations in mathematics, and it is difficult to obtain the analytic solutions. So it is necessary to establish the numerical method. Up to now, there are only algorithms and numerical simulation in the finite element method for the magnetoelasticity, but analytic result of finite element for the coupled magnetoelasticity is rarely considered. Furthermore, many traditional finite element error estimations is based on the regular condition of meshes, and it is not conducive to reflect the characteristic of solution. This project studies the anisotropic finite element method for magnetoelasticity, such that finite element method is more suitable for the magnetoelasticity computation on anisotropic meshes.

英文关键词: magnetoelasticity;anisotropic;finite element;error estimation

成为VIP会员查看完整内容
0

相关内容

基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
【干货书】概率,统计与数据,513页pdf
专知会员服务
137+阅读 · 2021年11月27日
专知会员服务
23+阅读 · 2021年10月6日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
32+阅读 · 2021年2月17日
专知会员服务
74+阅读 · 2020年12月7日
多源数据行人重识别研究综述
专知会员服务
41+阅读 · 2020年11月2日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
深圳内推 | 腾讯AI Lab招聘NLP工程实习生
PaperWeekly
0+阅读 · 2021年12月27日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
26+阅读 · 2018年2月27日
小贴士
相关VIP内容
基于流线的流场可视化绘制方法综述
专知会员服务
27+阅读 · 2021年12月9日
【干货书】概率,统计与数据,513页pdf
专知会员服务
137+阅读 · 2021年11月27日
专知会员服务
23+阅读 · 2021年10月6日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
22+阅读 · 2021年4月20日
专知会员服务
32+阅读 · 2021年2月17日
专知会员服务
74+阅读 · 2020年12月7日
多源数据行人重识别研究综述
专知会员服务
41+阅读 · 2020年11月2日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
相关资讯
深圳内推 | 腾讯AI Lab招聘NLP工程实习生
PaperWeekly
0+阅读 · 2021年12月27日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Tensorflow卷积神经网络
全球人工智能
13+阅读 · 2017年10月14日
[有意思的数学] 参数估计
机器学习和数学
15+阅读 · 2017年6月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员